# Copyright (c) OpenMMLab. All rights reserved. import codecs from typing import List, Optional from urllib.parse import urljoin import mmengine.dist as dist import numpy as np import torch from mmengine.fileio import LocalBackend, exists, get_file_backend, join_path from mmengine.logging import MMLogger from mmpretrain.registry import DATASETS from .base_dataset import BaseDataset from .categories import FASHIONMNIST_CATEGORITES, MNIST_CATEGORITES from .utils import (download_and_extract_archive, open_maybe_compressed_file, rm_suffix) @DATASETS.register_module() class MNIST(BaseDataset): """`MNIST `_ Dataset. This implementation is modified from https://github.com/pytorch/vision/blob/master/torchvision/datasets/mnist.py Args: data_root (str): The root directory of the MNIST Dataset. split (str, optional): The dataset split, supports "train" and "test". Default to "train". metainfo (dict, optional): Meta information for dataset, such as categories information. Defaults to None. download (bool): Whether to download the dataset if not exists. Defaults to True. **kwargs: Other keyword arguments in :class:`BaseDataset`. """ # noqa: E501 url_prefix = 'http://yann.lecun.com/exdb/mnist/' # train images and labels train_list = [ ['train-images-idx3-ubyte.gz', 'f68b3c2dcbeaaa9fbdd348bbdeb94873'], ['train-labels-idx1-ubyte.gz', 'd53e105ee54ea40749a09fcbcd1e9432'], ] # test images and labels test_list = [ ['t10k-images-idx3-ubyte.gz', '9fb629c4189551a2d022fa330f9573f3'], ['t10k-labels-idx1-ubyte.gz', 'ec29112dd5afa0611ce80d1b7f02629c'], ] METAINFO = {'classes': MNIST_CATEGORITES} def __init__(self, data_root: str = '', split: str = 'train', metainfo: Optional[dict] = None, download: bool = True, data_prefix: str = '', test_mode: bool = False, **kwargs): splits = ['train', 'test'] assert split in splits, \ f"The split must be one of {splits}, but get '{split}'" self.split = split # To handle the BC-breaking if split == 'train' and test_mode: logger = MMLogger.get_current_instance() logger.warning('split="train" but test_mode=True. ' 'The training set will be used.') if not data_root and not data_prefix: raise RuntimeError('Please set ``data_root`` to' 'specify the dataset path') self.download = download super().__init__( # The MNIST dataset doesn't need specify annotation file ann_file='', metainfo=metainfo, data_root=data_root, data_prefix=dict(root=data_prefix), test_mode=test_mode, **kwargs) def load_data_list(self): """Load images and ground truth labels.""" root = self.data_prefix['root'] backend = get_file_backend(root, enable_singleton=True) if dist.is_main_process() and not self._check_exists(): if not isinstance(backend, LocalBackend): raise RuntimeError(f'The dataset on {root} is not integrated, ' f'please manually handle it.') if self.download: self._download() else: raise RuntimeError( f'Cannot find {self.__class__.__name__} dataset in ' f"{self.data_prefix['root']}, you can specify " '`download=True` to download automatically.') dist.barrier() assert self._check_exists(), \ 'Download failed or shared storage is unavailable. Please ' \ f'download the dataset manually through {self.url_prefix}.' if not self.test_mode: file_list = self.train_list else: file_list = self.test_list # load data from SN3 files imgs = read_image_file(join_path(root, rm_suffix(file_list[0][0]))) gt_labels = read_label_file( join_path(root, rm_suffix(file_list[1][0]))) data_infos = [] for img, gt_label in zip(imgs, gt_labels): gt_label = np.array(gt_label, dtype=np.int64) info = {'img': img.numpy(), 'gt_label': gt_label} data_infos.append(info) return data_infos def _check_exists(self): """Check the exists of data files.""" root = self.data_prefix['root'] for filename, _ in (self.train_list + self.test_list): # get extracted filename of data extract_filename = rm_suffix(filename) fpath = join_path(root, extract_filename) if not exists(fpath): return False return True def _download(self): """Download and extract data files.""" root = self.data_prefix['root'] for filename, md5 in (self.train_list + self.test_list): url = urljoin(self.url_prefix, filename) download_and_extract_archive( url, download_root=root, filename=filename, md5=md5) def extra_repr(self) -> List[str]: """The extra repr information of the dataset.""" body = [f"Prefix of data: \t{self.data_prefix['root']}"] return body @DATASETS.register_module() class FashionMNIST(MNIST): """`Fashion-MNIST `_ Dataset. Args: data_root (str): The root directory of the MNIST Dataset. split (str, optional): The dataset split, supports "train" and "test". Default to "train". metainfo (dict, optional): Meta information for dataset, such as categories information. Defaults to None. download (bool): Whether to download the dataset if not exists. Defaults to True. **kwargs: Other keyword arguments in :class:`BaseDataset`. """ url_prefix = 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/' # train images and labels train_list = [ ['train-images-idx3-ubyte.gz', '8d4fb7e6c68d591d4c3dfef9ec88bf0d'], ['train-labels-idx1-ubyte.gz', '25c81989df183df01b3e8a0aad5dffbe'], ] # test images and labels test_list = [ ['t10k-images-idx3-ubyte.gz', 'bef4ecab320f06d8554ea6380940ec79'], ['t10k-labels-idx1-ubyte.gz', 'bb300cfdad3c16e7a12a480ee83cd310'], ] METAINFO = {'classes': FASHIONMNIST_CATEGORITES} def get_int(b: bytes) -> int: """Convert bytes to int.""" return int(codecs.encode(b, 'hex'), 16) def read_sn3_pascalvincent_tensor(path: str, strict: bool = True) -> torch.Tensor: """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx- io.lsh'). Argument may be a filename, compressed filename, or file object. """ # typemap if not hasattr(read_sn3_pascalvincent_tensor, 'typemap'): read_sn3_pascalvincent_tensor.typemap = { 8: (torch.uint8, np.uint8, np.uint8), 9: (torch.int8, np.int8, np.int8), 11: (torch.int16, np.dtype('>i2'), 'i2'), 12: (torch.int32, np.dtype('>i4'), 'i4'), 13: (torch.float32, np.dtype('>f4'), 'f4'), 14: (torch.float64, np.dtype('>f8'), 'f8') } # read with open_maybe_compressed_file(path) as f: data = f.read() # parse magic = get_int(data[0:4]) nd = magic % 256 ty = magic // 256 assert nd >= 1 and nd <= 3 assert ty >= 8 and ty <= 14 m = read_sn3_pascalvincent_tensor.typemap[ty] s = [get_int(data[4 * (i + 1):4 * (i + 2)]) for i in range(nd)] parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1))) assert parsed.shape[0] == np.prod(s) or not strict return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s) def read_label_file(path: str) -> torch.Tensor: """Read labels from SN3 label file.""" with open(path, 'rb') as f: x = read_sn3_pascalvincent_tensor(f, strict=False) assert (x.dtype == torch.uint8) assert (x.ndimension() == 1) return x.long() def read_image_file(path: str) -> torch.Tensor: """Read images from SN3 image file.""" with open(path, 'rb') as f: x = read_sn3_pascalvincent_tensor(f, strict=False) assert (x.dtype == torch.uint8) assert (x.ndimension() == 3) return x