# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import mmengine
from mmengine.dataset import BaseDataset
from mmengine.fileio import get_file_backend
from mmpretrain.registry import DATASETS
@DATASETS.register_module()
class MiniGPT4Dataset(BaseDataset):
"""Dataset for training MiniGPT4.
MiniGPT4 dataset directory:
minigpt4_dataset
├── image
│ ├── id0.jpg
│ │── id1.jpg
│ │── id2.jpg
│ └── ...
└── conversation_data.json
The structure of conversation_data.json:
[
// English data
{
"id": str(id0),
"conversation": "###Ask: [Ask content]
###Answer: [Answer content]"
},
// Chinese data
{
"id": str(id1),
"conversation": "###问: [Ask content]
###答:[Answer content]"
},
...
]
Args:
data_root (str): The root directory for ``ann_file`` and ``image``.
ann_file (str): Conversation file path.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def load_data_list(self) -> List[dict]:
file_backend = get_file_backend(self.data_root)
conversation_path = file_backend.join_path(self.data_root,
self.ann_file)
conversation = mmengine.load(conversation_path)
img_ids = {}
n = 0
for conv in conversation:
img_id = conv['id']
if img_id not in img_ids.keys():
img_ids[img_id] = n
n += 1
img_root = file_backend.join_path(self.data_root, 'image')
data_list = []
for conv in conversation:
img_file = '{}.jpg'.format(conv['id'])
chat_content = conv['conversation']
lang = 'en' if chat_content.startswith('###Ask: ') else 'zh'
data_info = {
'image_id': img_ids[conv['id']],
'img_path': file_backend.join_path(img_root, img_file),
'chat_content': chat_content,
'lang': lang,
}
data_list.append(data_info)
return data_list