import gradio as gr import glob import torch from opencd.apis import OpenCDInferencer device = 'cuda:0' if torch.cuda.is_available() else 'cpu' config_file = 'configs/TTP/ttp_sam_large_levircd_infer.py' checkpoint_file = 'ckpt/epoch_260.pth' # build the model from a config file and a checkpoint file mmcd_inferencer = OpenCDInferencer( model=config_file, weights=checkpoint_file, classes=['unchanged', 'changed'], palette=[[0, 0, 0], [255, 255, 255]], device=device ) def infer(img1, img2): # test a single image result = mmcd_inferencer([[img1, img2]], show=False, return_vis=True) visualization = result['visualization'] return visualization with gr.Blocks() as demo: gr.Markdown( """ # [Time Travelling Pixels: Bitemporal Features Integration with Foundation Model for Remote Sensing Image Change Detection](https://arxiv.org/abs/2312.16202) """) # a empty row gr.Row() with gr.Row(): input_0 = gr.Image(label='Input Image1') input_1 = gr.Image(label='Input Image2') with gr.Row(): output_gt = gr.Image(label='Predicted Mask') btn = gr.Button("Detect") btn.click(infer, inputs=[input_0, input_1], outputs=[output_gt]) img1_files = glob.glob('samples/A/*.png') img2_files = [f.replace('A', 'B') for f in img1_files] input_files = [[x, y] for x, y in zip(img1_files, img2_files)] gr.Examples(input_files, fn=infer, inputs=[input_0, input_1], outputs=[output_gt], cache_examples=True) gr.Markdown( """ This is the demo of ["Time Travelling Pixels: Bitemporal Features Integration with Foundation Model for Remote Sensing Image Change Detection"](https://arxiv.org/abs/2312.16202). Seeing [Github](https://github.com/KyanChen/TTP) for more information! """) # a empty row gr.Row() if __name__ == "__main__": demo.launch()