# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) 2022 Microsoft # Modified from # https://github.com/microsoft/unilm/blob/master/beit2/norm_ema_quantizer.py from typing import Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from mmengine.dist import all_reduce def ema_inplace(moving_avg: torch.Tensor, new: torch.Tensor, decay: torch.Tensor) -> None: """Update moving average.""" moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) def norm_ema_inplace(moving_avg: torch.Tensor, new: torch.Tensor, decay: torch.Tensor) -> None: """Update moving average with norm data.""" moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) moving_avg.data.copy_(F.normalize(moving_avg.data, p=2, dim=-1)) def sample_vectors(samples: torch.Tensor, num: int) -> torch.Tensor: """Sample vectors according to the given number.""" num_samples, device = samples.shape[0], samples.device if num_samples >= num: indices = torch.randperm(num_samples, device=device)[:num] else: indices = torch.randint(0, num_samples, (num, ), device=device) return samples[indices] def kmeans(samples: torch.Tensor, num_clusters: int, num_iters: int = 10, use_cosine_sim: bool = False) -> Tuple[torch.Tensor, torch.Tensor]: """Run k-means algorithm.""" dim, dtype, _ = samples.shape[-1], samples.dtype, samples.device means = sample_vectors(samples, num_clusters) for _ in range(num_iters): if use_cosine_sim: dists = samples @ means.t() else: diffs = rearrange(samples, 'n d -> n () d') \ - rearrange(means, 'c d -> () c d') dists = -(diffs**2).sum(dim=-1) buckets = dists.max(dim=-1).indices bins = torch.bincount(buckets, minlength=num_clusters) zero_mask = bins == 0 bins_min_clamped = bins.masked_fill(zero_mask, 1) new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d=dim), samples) new_means = new_means / bins_min_clamped[..., None] if use_cosine_sim: new_means = F.normalize(new_means, p=2, dim=-1) means = torch.where(zero_mask[..., None], means, new_means) return means, bins class EmbeddingEMA(nn.Module): """The codebook of embedding vectors. Args: num_tokens (int): Number of embedding vectors in the codebook. codebook_dim (int) : The dimension of embedding vectors in the codebook. kmeans_init (bool): Whether to use k-means to initialize the VectorQuantizer. Defaults to True. codebook_init_path (str): The initialization checkpoint for codebook. Defaults to None. """ def __init__(self, num_tokens: int, codebook_dim: int, kmeans_init: bool = True, codebook_init_path: Optional[str] = None): super().__init__() self.num_tokens = num_tokens self.codebook_dim = codebook_dim if codebook_init_path is None: if not kmeans_init: weight = torch.randn(num_tokens, codebook_dim) weight = F.normalize(weight, p=2, dim=-1) else: weight = torch.zeros(num_tokens, codebook_dim) self.register_buffer('initted', torch.Tensor([not kmeans_init])) else: print(f'load init codebook weight from {codebook_init_path}') codebook_ckpt_weight = torch.load( codebook_init_path, map_location='cpu') weight = codebook_ckpt_weight.clone() self.register_buffer('initted', torch.Tensor([True])) self.weight = nn.Parameter(weight, requires_grad=False) self.update = True @torch.jit.ignore def init_embed_(self, data: torch.Tensor) -> None: """Initialize embedding vectors of codebook.""" if self.initted: return print('Performing K-means init for codebook') embed, _ = kmeans(data, self.num_tokens, 10, use_cosine_sim=True) self.weight.data.copy_(embed) self.initted.data.copy_(torch.Tensor([True])) def forward(self, embed_id: torch.Tensor) -> torch.Tensor: """Get embedding vectors.""" return F.embedding(embed_id, self.weight) class NormEMAVectorQuantizer(nn.Module): """Normed EMA vector quantizer module. Args: num_embed (int): Number of embedding vectors in the codebook. Defaults to 8192. embed_dims (int) : The dimension of embedding vectors in the codebook. Defaults to 32. beta (float): The mutiplier for VectorQuantizer embedding loss. Defaults to 1. decay (float): The decay parameter of EMA. Defaults to 0.99. statistic_code_usage (bool): Whether to use cluster_size to record statistic. Defaults to True. kmeans_init (bool): Whether to use k-means to initialize the VectorQuantizer. Defaults to True. codebook_init_path (str): The initialization checkpoint for codebook. Defaults to None. """ def __init__(self, num_embed: int, embed_dims: int, beta: float, decay: float = 0.99, statistic_code_usage: bool = True, kmeans_init: bool = True, codebook_init_path: Optional[str] = None) -> None: super().__init__() self.codebook_dim = embed_dims self.num_tokens = num_embed self.beta = beta self.decay = decay # learnable = True if orthogonal_reg_weight > 0 else False self.embedding = EmbeddingEMA( num_tokens=self.num_tokens, codebook_dim=self.codebook_dim, kmeans_init=kmeans_init, codebook_init_path=codebook_init_path) self.statistic_code_usage = statistic_code_usage if statistic_code_usage: self.register_buffer('cluster_size', torch.zeros(num_embed)) def reset_cluster_size(self, device): if self.statistic_code_usage: self.register_buffer('cluster_size', torch.zeros(self.num_tokens)) self.cluster_size = self.cluster_size.to(device) def forward(self, z): """Forward function.""" # reshape z -> (batch, height, width, channel) z = rearrange(z, 'b c h w -> b h w c') z = F.normalize(z, p=2, dim=-1) z_flattened = z.reshape(-1, self.codebook_dim) self.embedding.init_embed_(z_flattened) # 'n d -> d n' d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \ self.embedding.weight.pow(2).sum(dim=1) - 2 * \ torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(encoding_indices).view(z.shape) encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) if not self.training: with torch.no_grad(): cluster_size = encodings.sum(0) all_reduce(cluster_size) ema_inplace(self.cluster_size, cluster_size, self.decay) if self.training and self.embedding.update: # update cluster size with EMA bins = encodings.sum(0) all_reduce(bins) ema_inplace(self.cluster_size, bins, self.decay) zero_mask = (bins == 0) bins = bins.masked_fill(zero_mask, 1.) embed_sum = z_flattened.t() @ encodings all_reduce(embed_sum) embed_normalized = (embed_sum / bins.unsqueeze(0)).t() embed_normalized = F.normalize(embed_normalized, p=2, dim=-1) embed_normalized = torch.where(zero_mask[..., None], self.embedding.weight, embed_normalized) # Update embedding vectors with EMA norm_ema_inplace(self.embedding.weight, embed_normalized, self.decay) # compute loss for embedding loss = self.beta * F.mse_loss(z_q.detach(), z) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape z_q = rearrange(z_q, 'b h w c -> b c h w') return z_q, loss, encoding_indices