# Copyright (c) OpenMMLab. All rights reserved. from argparse import ArgumentParser from mmseg.apis import MMSegInferencer def main(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('model', help='Config file') parser.add_argument('--checkpoint', default=None, help='Checkpoint file') parser.add_argument( '--out-dir', default='', help='Path to save result file') parser.add_argument( '--show', action='store_true', default=False, help='Whether to display the drawn image.') parser.add_argument( '--dataset-name', default='cityscapes', help='Color palette used for segmentation map') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--opacity', type=float, default=0.5, help='Opacity of painted segmentation map. In (0, 1] range.') parser.add_argument( '--with-labels', action='store_true', default=False, help='Whether to display the class labels.') args = parser.parse_args() # build the model from a config file and a checkpoint file mmseg_inferencer = MMSegInferencer( args.model, args.checkpoint, dataset_name=args.dataset_name, device=args.device) # test a single image mmseg_inferencer( args.img, show=args.show, out_dir=args.out_dir, opacity=args.opacity, with_labels=args.with_labels) if __name__ == '__main__': main()