# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmseg.registry import MODELS from ..utils import SelfAttentionBlock as _SelfAttentionBlock from ..utils import resize from .cascade_decode_head import BaseCascadeDecodeHead class SpatialGatherModule(nn.Module): """Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. """ def __init__(self, scale): super().__init__() self.scale = scale def forward(self, feats, probs): """Forward function.""" batch_size, num_classes, height, width = probs.size() channels = feats.size(1) probs = probs.view(batch_size, num_classes, -1) feats = feats.view(batch_size, channels, -1) # [batch_size, height*width, num_classes] feats = feats.permute(0, 2, 1) # [batch_size, channels, height*width] probs = F.softmax(self.scale * probs, dim=2) # [batch_size, channels, num_classes] ocr_context = torch.matmul(probs, feats) ocr_context = ocr_context.permute(0, 2, 1).contiguous().unsqueeze(3) return ocr_context class ObjectAttentionBlock(_SelfAttentionBlock): """Make a OCR used SelfAttentionBlock.""" def __init__(self, in_channels, channels, scale, conv_cfg, norm_cfg, act_cfg): if scale > 1: query_downsample = nn.MaxPool2d(kernel_size=scale) else: query_downsample = None super().__init__( key_in_channels=in_channels, query_in_channels=in_channels, channels=channels, out_channels=in_channels, share_key_query=False, query_downsample=query_downsample, key_downsample=None, key_query_num_convs=2, key_query_norm=True, value_out_num_convs=1, value_out_norm=True, matmul_norm=True, with_out=True, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.bottleneck = ConvModule( in_channels * 2, in_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def forward(self, query_feats, key_feats): """Forward function.""" context = super().forward(query_feats, key_feats) output = self.bottleneck(torch.cat([context, query_feats], dim=1)) if self.query_downsample is not None: output = resize(query_feats) return output @MODELS.register_module() class OCRHead(BaseCascadeDecodeHead): """Object-Contextual Representations for Semantic Segmentation. This head is the implementation of `OCRNet `_. Args: ocr_channels (int): The intermediate channels of OCR block. scale (int): The scale of probability map in SpatialGatherModule in Default: 1. """ def __init__(self, ocr_channels, scale=1, **kwargs): super().__init__(**kwargs) self.ocr_channels = ocr_channels self.scale = scale self.object_context_block = ObjectAttentionBlock( self.channels, self.ocr_channels, self.scale, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.spatial_gather_module = SpatialGatherModule(self.scale) self.bottleneck = ConvModule( self.in_channels, self.channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) def forward(self, inputs, prev_output): """Forward function.""" x = self._transform_inputs(inputs) feats = self.bottleneck(x) context = self.spatial_gather_module(feats, prev_output) object_context = self.object_context_block(feats, context) output = self.cls_seg(object_context) return output