# Copyright (c) OpenMMLab. All rights reserved. """Modified from https://github.com/open- mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py.""" import argparse import json from collections import defaultdict import matplotlib.pyplot as plt import seaborn as sns def plot_curve(log_dicts, args): if args.backend is not None: plt.switch_backend(args.backend) sns.set_style(args.style) # if legend is None, use {filename}_{key} as legend legend = args.legend if legend is None: legend = [] for json_log in args.json_logs: for metric in args.keys: legend.append(f'{json_log}_{metric}') assert len(legend) == (len(args.json_logs) * len(args.keys)) metrics = args.keys num_metrics = len(metrics) for i, log_dict in enumerate(log_dicts): epochs = list(log_dict.keys()) for j, metric in enumerate(metrics): print(f'plot curve of {args.json_logs[i]}, metric is {metric}') plot_epochs = [] plot_iters = [] plot_values = [] # In some log files exist lines of validation, # `mode` list is used to only collect iter number # of training line. for epoch in epochs: epoch_logs = log_dict[epoch] if metric not in epoch_logs.keys(): continue if metric in ['mIoU', 'mAcc', 'aAcc']: plot_epochs.append(epoch) plot_values.append(epoch_logs[metric][0]) else: for idx in range(len(epoch_logs[metric])): plot_iters.append(epoch_logs['step'][idx]) plot_values.append(epoch_logs[metric][idx]) ax = plt.gca() label = legend[i * num_metrics + j] if metric in ['mIoU', 'mAcc', 'aAcc']: ax.set_xticks(plot_epochs) plt.xlabel('step') plt.plot(plot_epochs, plot_values, label=label, marker='o') else: plt.xlabel('iter') plt.plot(plot_iters, plot_values, label=label, linewidth=0.5) plt.legend() if args.title is not None: plt.title(args.title) if args.out is None: plt.show() else: print(f'save curve to: {args.out}') plt.savefig(args.out) plt.cla() def parse_args(): parser = argparse.ArgumentParser(description='Analyze Json Log') parser.add_argument( 'json_logs', type=str, nargs='+', help='path of train log in json format') parser.add_argument( '--keys', type=str, nargs='+', default=['mIoU'], help='the metric that you want to plot') parser.add_argument('--title', type=str, help='title of figure') parser.add_argument( '--legend', type=str, nargs='+', default=None, help='legend of each plot') parser.add_argument( '--backend', type=str, default=None, help='backend of plt') parser.add_argument( '--style', type=str, default='dark', help='style of plt') parser.add_argument('--out', type=str, default=None) args = parser.parse_args() return args def load_json_logs(json_logs): # load and convert json_logs to log_dict, key is step, value is a sub dict # keys of sub dict is different metrics # value of sub dict is a list of corresponding values of all iterations log_dicts = [dict() for _ in json_logs] prev_step = 0 for json_log, log_dict in zip(json_logs, log_dicts): with open(json_log) as log_file: for line in log_file: log = json.loads(line.strip()) # the final step in json file is 0. if 'step' in log and log['step'] != 0: step = log['step'] prev_step = step else: step = prev_step if step not in log_dict: log_dict[step] = defaultdict(list) for k, v in log.items(): log_dict[step][k].append(v) return log_dicts def main(): args = parse_args() json_logs = args.json_logs for json_log in json_logs: assert json_log.endswith('.json') log_dicts = load_json_logs(json_logs) plot_curve(log_dicts, args) if __name__ == '__main__': main()