# Copyright (c) OpenMMLab. All rights reserved. # Originally from https://github.com/visual-attention-network/segnext # Licensed under the Apache License, Version 2.0 (the "License") import math import warnings import torch import torch.nn as nn from mmcv.cnn import build_activation_layer, build_norm_layer from mmcv.cnn.bricks import DropPath from mmengine.model import BaseModule from mmengine.model.weight_init import (constant_init, normal_init, trunc_normal_init) from mmseg.registry import MODELS class Mlp(BaseModule): """Multi Layer Perceptron (MLP) Module. Args: in_features (int): The dimension of input features. hidden_features (int): The dimension of hidden features. Defaults: None. out_features (int): The dimension of output features. Defaults: None. act_cfg (dict): Config dict for activation layer in block. Default: dict(type='GELU'). drop (float): The number of dropout rate in MLP block. Defaults: 0.0. """ def __init__(self, in_features, hidden_features=None, out_features=None, act_cfg=dict(type='GELU'), drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.dwconv = nn.Conv2d( hidden_features, hidden_features, 3, 1, 1, bias=True, groups=hidden_features) self.act = build_activation_layer(act_cfg) self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) def forward(self, x): """Forward function.""" x = self.fc1(x) x = self.dwconv(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class StemConv(BaseModule): """Stem Block at the beginning of Semantic Branch. Args: in_channels (int): The dimension of input channels. out_channels (int): The dimension of output channels. act_cfg (dict): Config dict for activation layer in block. Default: dict(type='GELU'). norm_cfg (dict): Config dict for normalization layer. Defaults: dict(type='SyncBN', requires_grad=True). """ def __init__(self, in_channels, out_channels, act_cfg=dict(type='GELU'), norm_cfg=dict(type='SyncBN', requires_grad=True)): super().__init__() self.proj = nn.Sequential( nn.Conv2d( in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), build_norm_layer(norm_cfg, out_channels // 2)[1], build_activation_layer(act_cfg), nn.Conv2d( out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), build_norm_layer(norm_cfg, out_channels)[1], ) def forward(self, x): """Forward function.""" x = self.proj(x) _, _, H, W = x.size() x = x.flatten(2).transpose(1, 2) return x, H, W class MSCAAttention(BaseModule): """Attention Module in Multi-Scale Convolutional Attention Module (MSCA). Args: channels (int): The dimension of channels. kernel_sizes (list): The size of attention kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]]. paddings (list): The number of corresponding padding value in attention module. Defaults: [2, [0, 3], [0, 5], [0, 10]]. """ def __init__(self, channels, kernel_sizes=[5, [1, 7], [1, 11], [1, 21]], paddings=[2, [0, 3], [0, 5], [0, 10]]): super().__init__() self.conv0 = nn.Conv2d( channels, channels, kernel_size=kernel_sizes[0], padding=paddings[0], groups=channels) for i, (kernel_size, padding) in enumerate(zip(kernel_sizes[1:], paddings[1:])): kernel_size_ = [kernel_size, kernel_size[::-1]] padding_ = [padding, padding[::-1]] conv_name = [f'conv{i}_1', f'conv{i}_2'] for i_kernel, i_pad, i_conv in zip(kernel_size_, padding_, conv_name): self.add_module( i_conv, nn.Conv2d( channels, channels, tuple(i_kernel), padding=i_pad, groups=channels)) self.conv3 = nn.Conv2d(channels, channels, 1) def forward(self, x): """Forward function.""" u = x.clone() attn = self.conv0(x) # Multi-Scale Feature extraction attn_0 = self.conv0_1(attn) attn_0 = self.conv0_2(attn_0) attn_1 = self.conv1_1(attn) attn_1 = self.conv1_2(attn_1) attn_2 = self.conv2_1(attn) attn_2 = self.conv2_2(attn_2) attn = attn + attn_0 + attn_1 + attn_2 # Channel Mixing attn = self.conv3(attn) # Convolutional Attention x = attn * u return x class MSCASpatialAttention(BaseModule): """Spatial Attention Module in Multi-Scale Convolutional Attention Module (MSCA). Args: in_channels (int): The dimension of channels. attention_kernel_sizes (list): The size of attention kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]]. attention_kernel_paddings (list): The number of corresponding padding value in attention module. Defaults: [2, [0, 3], [0, 5], [0, 10]]. act_cfg (dict): Config dict for activation layer in block. Default: dict(type='GELU'). """ def __init__(self, in_channels, attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]], attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]], act_cfg=dict(type='GELU')): super().__init__() self.proj_1 = nn.Conv2d(in_channels, in_channels, 1) self.activation = build_activation_layer(act_cfg) self.spatial_gating_unit = MSCAAttention(in_channels, attention_kernel_sizes, attention_kernel_paddings) self.proj_2 = nn.Conv2d(in_channels, in_channels, 1) def forward(self, x): """Forward function.""" shorcut = x.clone() x = self.proj_1(x) x = self.activation(x) x = self.spatial_gating_unit(x) x = self.proj_2(x) x = x + shorcut return x class MSCABlock(BaseModule): """Basic Multi-Scale Convolutional Attention Block. It leverage the large- kernel attention (LKA) mechanism to build both channel and spatial attention. In each branch, it uses two depth-wise strip convolutions to approximate standard depth-wise convolutions with large kernels. The kernel size for each branch is set to 7, 11, and 21, respectively. Args: channels (int): The dimension of channels. attention_kernel_sizes (list): The size of attention kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]]. attention_kernel_paddings (list): The number of corresponding padding value in attention module. Defaults: [2, [0, 3], [0, 5], [0, 10]]. mlp_ratio (float): The ratio of multiple input dimension to calculate hidden feature in MLP layer. Defaults: 4.0. drop (float): The number of dropout rate in MLP block. Defaults: 0.0. drop_path (float): The ratio of drop paths. Defaults: 0.0. act_cfg (dict): Config dict for activation layer in block. Default: dict(type='GELU'). norm_cfg (dict): Config dict for normalization layer. Defaults: dict(type='SyncBN', requires_grad=True). """ def __init__(self, channels, attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]], attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]], mlp_ratio=4., drop=0., drop_path=0., act_cfg=dict(type='GELU'), norm_cfg=dict(type='SyncBN', requires_grad=True)): super().__init__() self.norm1 = build_norm_layer(norm_cfg, channels)[1] self.attn = MSCASpatialAttention(channels, attention_kernel_sizes, attention_kernel_paddings, act_cfg) self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() self.norm2 = build_norm_layer(norm_cfg, channels)[1] mlp_hidden_channels = int(channels * mlp_ratio) self.mlp = Mlp( in_features=channels, hidden_features=mlp_hidden_channels, act_cfg=act_cfg, drop=drop) layer_scale_init_value = 1e-2 self.layer_scale_1 = nn.Parameter( layer_scale_init_value * torch.ones(channels), requires_grad=True) self.layer_scale_2 = nn.Parameter( layer_scale_init_value * torch.ones(channels), requires_grad=True) def forward(self, x, H, W): """Forward function.""" B, N, C = x.shape x = x.permute(0, 2, 1).view(B, C, H, W) x = x + self.drop_path( self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.attn(self.norm1(x))) x = x + self.drop_path( self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x))) x = x.view(B, C, N).permute(0, 2, 1) return x class OverlapPatchEmbed(BaseModule): """Image to Patch Embedding. Args: patch_size (int): The patch size. Defaults: 7. stride (int): Stride of the convolutional layer. Default: 4. in_channels (int): The number of input channels. Defaults: 3. embed_dims (int): The dimensions of embedding. Defaults: 768. norm_cfg (dict): Config dict for normalization layer. Defaults: dict(type='SyncBN', requires_grad=True). """ def __init__(self, patch_size=7, stride=4, in_channels=3, embed_dim=768, norm_cfg=dict(type='SyncBN', requires_grad=True)): super().__init__() self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=patch_size // 2) self.norm = build_norm_layer(norm_cfg, embed_dim)[1] def forward(self, x): """Forward function.""" x = self.proj(x) _, _, H, W = x.shape x = self.norm(x) x = x.flatten(2).transpose(1, 2) return x, H, W @MODELS.register_module() class MSCAN(BaseModule): """SegNeXt Multi-Scale Convolutional Attention Network (MCSAN) backbone. This backbone is the implementation of `SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation `_. Inspiration from https://github.com/visual-attention-network/segnext. Args: in_channels (int): The number of input channels. Defaults: 3. embed_dims (list[int]): Embedding dimension. Defaults: [64, 128, 256, 512]. mlp_ratios (list[int]): Ratio of mlp hidden dim to embedding dim. Defaults: [4, 4, 4, 4]. drop_rate (float): Dropout rate. Defaults: 0. drop_path_rate (float): Stochastic depth rate. Defaults: 0. depths (list[int]): Depths of each Swin Transformer stage. Default: [3, 4, 6, 3]. num_stages (int): MSCAN stages. Default: 4. attention_kernel_sizes (list): Size of attention kernel in Attention Module (Figure 2(b) of original paper). Defaults: [5, [1, 7], [1, 11], [1, 21]]. attention_kernel_paddings (list): Size of attention paddings in Attention Module (Figure 2(b) of original paper). Defaults: [2, [0, 3], [0, 5], [0, 10]]. norm_cfg (dict): Config of norm layers. Defaults: dict(type='SyncBN', requires_grad=True). pretrained (str, optional): model pretrained path. Default: None. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None. """ def __init__(self, in_channels=3, embed_dims=[64, 128, 256, 512], mlp_ratios=[4, 4, 4, 4], drop_rate=0., drop_path_rate=0., depths=[3, 4, 6, 3], num_stages=4, attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]], attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]], act_cfg=dict(type='GELU'), norm_cfg=dict(type='SyncBN', requires_grad=True), pretrained=None, init_cfg=None): super().__init__(init_cfg=init_cfg) assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be set at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is not None: raise TypeError('pretrained must be a str or None') self.depths = depths self.num_stages = num_stages dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule cur = 0 for i in range(num_stages): if i == 0: patch_embed = StemConv(3, embed_dims[0], norm_cfg=norm_cfg) else: patch_embed = OverlapPatchEmbed( patch_size=7 if i == 0 else 3, stride=4 if i == 0 else 2, in_channels=in_channels if i == 0 else embed_dims[i - 1], embed_dim=embed_dims[i], norm_cfg=norm_cfg) block = nn.ModuleList([ MSCABlock( channels=embed_dims[i], attention_kernel_sizes=attention_kernel_sizes, attention_kernel_paddings=attention_kernel_paddings, mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j], act_cfg=act_cfg, norm_cfg=norm_cfg) for j in range(depths[i]) ]) norm = nn.LayerNorm(embed_dims[i]) cur += depths[i] setattr(self, f'patch_embed{i + 1}', patch_embed) setattr(self, f'block{i + 1}', block) setattr(self, f'norm{i + 1}', norm) def init_weights(self): """Initialize modules of MSCAN.""" print('init cfg', self.init_cfg) if self.init_cfg is None: for m in self.modules(): if isinstance(m, nn.Linear): trunc_normal_init(m, std=.02, bias=0.) elif isinstance(m, nn.LayerNorm): constant_init(m, val=1.0, bias=0.) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[ 1] * m.out_channels fan_out //= m.groups normal_init( m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0) else: super().init_weights() def forward(self, x): """Forward function.""" B = x.shape[0] outs = [] for i in range(self.num_stages): patch_embed = getattr(self, f'patch_embed{i + 1}') block = getattr(self, f'block{i + 1}') norm = getattr(self, f'norm{i + 1}') x, H, W = patch_embed(x) for blk in block: x = blk(x, H, W) x = norm(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() outs.append(x) return outs