# Copyright (c) OpenMMLab. All rights reserved. from typing import List from mmengine import get_file_backend, list_from_file from mmpretrain.registry import DATASETS from .base_dataset import BaseDataset from .categories import SUN397_CATEGORIES @DATASETS.register_module() class SUN397(BaseDataset): """The SUN397 Dataset. Support the `SUN397 Dataset `_ Dataset. After downloading and decompression, the dataset directory structure is as follows. SUN397 dataset directory: :: SUN397 ├── SUN397 │ ├── a │ │ ├── abbey │ | | ├── sun_aaalbzqrimafwbiv.jpg │ | | └── ... │ │ ├── airplane_cabin │ | | ├── sun_aadqdkqaslqqoblu.jpg │ | | └── ... │ | └── ... │ ├── b │ │ └── ... │ ├── c │ │ └── ... │ └── ... └── Partitions ├── ClassName.txt ├── Training_01.txt ├── Testing_01.txt └── ... Args: data_root (str): The root directory for Stanford Cars dataset. split (str, optional): The dataset split, supports "train" and "test". Default to "train". Examples: >>> from mmpretrain.datasets import SUN397 >>> train_dataset = SUN397(data_root='data/SUN397', split='train') >>> train_dataset Dataset SUN397 Number of samples: 19850 Number of categories: 397 Root of dataset: data/SUN397 >>> test_dataset = SUN397(data_root='data/SUN397', split='test') >>> test_dataset Dataset SUN397 Number of samples: 19850 Number of categories: 397 Root of dataset: data/SUN397 **Note that some images are not a jpg file although the name ends with ".jpg". The backend of SUN397 should be "pillow" as below to read these images properly,** .. code-block:: python pipeline = [ dict(type='LoadImageFromFile', imdecode_backend='pillow'), dict(type='RandomResizedCrop', scale=224), dict(type='PackInputs') ] """ # noqa: E501 METAINFO = {'classes': SUN397_CATEGORIES} def __init__(self, data_root: str, split: str = 'train', **kwargs): splits = ['train', 'test'] assert split in splits, \ f"The split must be one of {splits}, but get '{split}'" self.split = split self.backend = get_file_backend(data_root, enable_singleton=True) if split == 'train': ann_file = self.backend.join_path('Partitions', 'Training_01.txt') else: ann_file = self.backend.join_path('Partitions', 'Testing_01.txt') data_prefix = 'SUN397' test_mode = split == 'test' super(SUN397, self).__init__( ann_file=ann_file, data_root=data_root, test_mode=test_mode, data_prefix=data_prefix, **kwargs) def load_data_list(self): pairs = list_from_file(self.ann_file) data_list = [] for pair in pairs: img_path = self.backend.join_path(self.img_prefix, pair[1:]) items = pair.split('/') class_name = '_'.join(items[2:-1]) gt_label = self.METAINFO['classes'].index(class_name) info = dict(img_path=img_path, gt_label=gt_label) data_list.append(info) return data_list def __getitem__(self, idx: int) -> dict: try: return super().__getitem__(idx) except AttributeError: raise RuntimeError( 'Some images in the SUN397 dataset are not a jpg file ' 'although the name ends with ".jpg". The backend of SUN397 ' 'should be "pillow" to read these images properly.') def extra_repr(self) -> List[str]: """The extra repr information of the dataset.""" body = [ f'Root of dataset: \t{self.data_root}', ] return body