# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp from typing import Callable, Dict, List, Optional, Sequence, Union import mmengine import mmengine.fileio as fileio import numpy as np from mmengine.dataset import BaseDataset, Compose from mmseg.registry import DATASETS @DATASETS.register_module() class BaseSegDataset(BaseDataset): """Custom dataset for semantic segmentation. An example of file structure is as followed. .. code-block:: none ├── data │ ├── my_dataset │ │ ├── img_dir │ │ │ ├── train │ │ │ │ ├── xxx{img_suffix} │ │ │ │ ├── yyy{img_suffix} │ │ │ │ ├── zzz{img_suffix} │ │ │ ├── val │ │ ├── ann_dir │ │ │ ├── train │ │ │ │ ├── xxx{seg_map_suffix} │ │ │ │ ├── yyy{seg_map_suffix} │ │ │ │ ├── zzz{seg_map_suffix} │ │ │ ├── val The img/gt_semantic_seg pair of BaseSegDataset should be of the same except suffix. A valid img/gt_semantic_seg filename pair should be like ``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included in the suffix). If split is given, then ``xxx`` is specified in txt file. Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded. Please refer to ``docs/en/tutorials/new_dataset.md`` for more details. Args: ann_file (str): Annotation file path. Defaults to ''. metainfo (dict, optional): Meta information for dataset, such as specify classes to load. Defaults to None. data_root (str, optional): The root directory for ``data_prefix`` and ``ann_file``. Defaults to None. data_prefix (dict, optional): Prefix for training data. Defaults to dict(img_path=None, seg_map_path=None). img_suffix (str): Suffix of images. Default: '.jpg' seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' filter_cfg (dict, optional): Config for filter data. Defaults to None. indices (int or Sequence[int], optional): Support using first few data in annotation file to facilitate training/testing on a smaller dataset. Defaults to None which means using all ``data_infos``. serialize_data (bool, optional): Whether to hold memory using serialized objects, when enabled, data loader workers can use shared RAM from master process instead of making a copy. Defaults to True. pipeline (list, optional): Processing pipeline. Defaults to []. test_mode (bool, optional): ``test_mode=True`` means in test phase. Defaults to False. lazy_init (bool, optional): Whether to load annotation during instantiation. In some cases, such as visualization, only the meta information of the dataset is needed, which is not necessary to load annotation file. ``Basedataset`` can skip load annotations to save time by set ``lazy_init=True``. Defaults to False. max_refetch (int, optional): If ``Basedataset.prepare_data`` get a None img. The maximum extra number of cycles to get a valid image. Defaults to 1000. ignore_index (int): The label index to be ignored. Default: 255 reduce_zero_label (bool): Whether to mark label zero as ignored. Default to False. backend_args (dict, Optional): Arguments to instantiate a file backend. See https://mmengine.readthedocs.io/en/latest/api/fileio.htm for details. Defaults to None. Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required. """ METAINFO: dict = dict() def __init__(self, ann_file: str = '', img_suffix='.jpg', seg_map_suffix='.png', metainfo: Optional[dict] = None, data_root: Optional[str] = None, data_prefix: dict = dict(img_path='', seg_map_path=''), filter_cfg: Optional[dict] = None, indices: Optional[Union[int, Sequence[int]]] = None, serialize_data: bool = True, pipeline: List[Union[dict, Callable]] = [], test_mode: bool = False, lazy_init: bool = False, max_refetch: int = 1000, ignore_index: int = 255, reduce_zero_label: bool = False, backend_args: Optional[dict] = None) -> None: self.img_suffix = img_suffix self.seg_map_suffix = seg_map_suffix self.ignore_index = ignore_index self.reduce_zero_label = reduce_zero_label self.backend_args = backend_args.copy() if backend_args else None self.data_root = data_root self.data_prefix = copy.copy(data_prefix) self.ann_file = ann_file self.filter_cfg = copy.deepcopy(filter_cfg) self._indices = indices self.serialize_data = serialize_data self.test_mode = test_mode self.max_refetch = max_refetch self.data_list: List[dict] = [] self.data_bytes: np.ndarray # Set meta information. self._metainfo = self._load_metainfo(copy.deepcopy(metainfo)) # Get label map for custom classes new_classes = self._metainfo.get('classes', None) self.label_map = self.get_label_map(new_classes) self._metainfo.update( dict( label_map=self.label_map, reduce_zero_label=self.reduce_zero_label)) # Update palette based on label map or generate palette # if it is not defined updated_palette = self._update_palette() self._metainfo.update(dict(palette=updated_palette)) # Join paths. if self.data_root is not None: self._join_prefix() # Build pipeline. self.pipeline = Compose(pipeline) # Full initialize the dataset. if not lazy_init: self.full_init() if test_mode: assert self._metainfo.get('classes') is not None, \ 'dataset metainfo `classes` should be specified when testing' @classmethod def get_label_map(cls, new_classes: Optional[Sequence] = None ) -> Union[Dict, None]: """Require label mapping. The ``label_map`` is a dictionary, its keys are the old label ids and its values are the new label ids, and is used for changing pixel labels in load_annotations. If and only if old classes in cls.METAINFO is not equal to new classes in self._metainfo and nether of them is not None, `label_map` is not None. Args: new_classes (list, tuple, optional): The new classes name from metainfo. Default to None. Returns: dict, optional: The mapping from old classes in cls.METAINFO to new classes in self._metainfo """ old_classes = cls.METAINFO.get('classes', None) if (new_classes is not None and old_classes is not None and list(new_classes) != list(old_classes)): label_map = {} if not set(new_classes).issubset(cls.METAINFO['classes']): raise ValueError( f'new classes {new_classes} is not a ' f'subset of classes {old_classes} in METAINFO.') for i, c in enumerate(old_classes): if c not in new_classes: label_map[i] = 255 else: label_map[i] = new_classes.index(c) return label_map else: return None def _update_palette(self) -> list: """Update palette after loading metainfo. If length of palette is equal to classes, just return the palette. If palette is not defined, it will randomly generate a palette. If classes is updated by customer, it will return the subset of palette. Returns: Sequence: Palette for current dataset. """ palette = self._metainfo.get('palette', []) classes = self._metainfo.get('classes', []) # palette does match classes if len(palette) == len(classes): return palette if len(palette) == 0: # Get random state before set seed, and restore # random state later. # It will prevent loss of randomness, as the palette # may be different in each iteration if not specified. # See: https://github.com/open-mmlab/mmdetection/issues/5844 state = np.random.get_state() np.random.seed(42) # random palette new_palette = np.random.randint( 0, 255, size=(len(classes), 3)).tolist() np.random.set_state(state) elif len(palette) >= len(classes) and self.label_map is not None: new_palette = [] # return subset of palette for old_id, new_id in sorted( self.label_map.items(), key=lambda x: x[1]): if new_id != 255: new_palette.append(palette[old_id]) new_palette = type(palette)(new_palette) else: raise ValueError('palette does not match classes ' f'as metainfo is {self._metainfo}.') return new_palette def load_data_list(self) -> List[dict]: """Load annotation from directory or annotation file. Returns: list[dict]: All data info of dataset. """ data_list = [] img_dir = self.data_prefix.get('img_path', None) ann_dir = self.data_prefix.get('seg_map_path', None) if not osp.isdir(self.ann_file) and self.ann_file: assert osp.isfile(self.ann_file), \ f'Failed to load `ann_file` {self.ann_file}' lines = mmengine.list_from_file( self.ann_file, backend_args=self.backend_args) for line in lines: img_name = line.strip() data_info = dict( img_path=osp.join(img_dir, img_name + self.img_suffix)) if ann_dir is not None: seg_map = img_name + self.seg_map_suffix data_info['seg_map_path'] = osp.join(ann_dir, seg_map) data_info['label_map'] = self.label_map data_info['reduce_zero_label'] = self.reduce_zero_label data_info['seg_fields'] = [] data_list.append(data_info) else: _suffix_len = len(self.img_suffix) for img in fileio.list_dir_or_file( dir_path=img_dir, list_dir=False, suffix=self.img_suffix, recursive=True, backend_args=self.backend_args): data_info = dict(img_path=osp.join(img_dir, img)) if ann_dir is not None: seg_map = img[:-_suffix_len] + self.seg_map_suffix data_info['seg_map_path'] = osp.join(ann_dir, seg_map) data_info['label_map'] = self.label_map data_info['reduce_zero_label'] = self.reduce_zero_label data_info['seg_fields'] = [] data_list.append(data_info) data_list = sorted(data_list, key=lambda x: x['img_path']) return data_list @DATASETS.register_module() class BaseCDDataset(BaseDataset): """Custom dataset for change detection. An example of file structure is as followed. .. code-block:: none ├── data │ ├── my_dataset │ │ ├── img_dir │ │ │ ├── train │ │ │ │ ├── xxx{img_suffix} │ │ │ │ ├── yyy{img_suffix} │ │ │ │ ├── zzz{img_suffix} │ │ │ ├── val │ │ ├── img_dir2 │ │ │ ├── train │ │ │ │ ├── xxx{img_suffix} │ │ │ │ ├── yyy{img_suffix} │ │ │ │ ├── zzz{img_suffix} │ │ │ ├── val │ │ ├── ann_dir │ │ │ ├── train │ │ │ │ ├── xxx{seg_map_suffix} │ │ │ │ ├── yyy{seg_map_suffix} │ │ │ │ ├── zzz{seg_map_suffix} │ │ │ ├── val The image names in img_dir and img_dir2 should be consistent. The img/gt_semantic_seg pair of BaseSegDataset should be of the same except suffix. A valid img/gt_semantic_seg filename pair should be like ``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included in the suffix). If split is given, then ``xxx`` is specified in txt file. Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded. Please refer to ``docs/en/tutorials/new_dataset.md`` for more details. Args: ann_file (str): Annotation file path. Defaults to ''. metainfo (dict, optional): Meta information for dataset, such as specify classes to load. Defaults to None. data_root (str, optional): The root directory for ``data_prefix`` and ``ann_file``. Defaults to None. data_prefix (dict, optional): Prefix for training data. Defaults to dict(img_path=None, img_path2=None, seg_map_path=None). img_suffix (str): Suffix of images. Default: '.jpg' img_suffix2 (str): Suffix of images. Default: '.jpg' seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' filter_cfg (dict, optional): Config for filter data. Defaults to None. indices (int or Sequence[int], optional): Support using first few data in annotation file to facilitate training/testing on a smaller dataset. Defaults to None which means using all ``data_infos``. serialize_data (bool, optional): Whether to hold memory using serialized objects, when enabled, data loader workers can use shared RAM from master process instead of making a copy. Defaults to True. pipeline (list, optional): Processing pipeline. Defaults to []. test_mode (bool, optional): ``test_mode=True`` means in test phase. Defaults to False. lazy_init (bool, optional): Whether to load annotation during instantiation. In some cases, such as visualization, only the meta information of the dataset is needed, which is not necessary to load annotation file. ``Basedataset`` can skip load annotations to save time by set ``lazy_init=True``. Defaults to False. max_refetch (int, optional): If ``Basedataset.prepare_data`` get a None img. The maximum extra number of cycles to get a valid image. Defaults to 1000. ignore_index (int): The label index to be ignored. Default: 255 reduce_zero_label (bool): Whether to mark label zero as ignored. Default to False. backend_args (dict, Optional): Arguments to instantiate a file backend. See https://mmengine.readthedocs.io/en/latest/api/fileio.htm for details. Defaults to None. Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required. """ METAINFO: dict = dict() def __init__(self, ann_file: str = '', img_suffix='.jpg', img_suffix2='.jpg', seg_map_suffix='.png', metainfo: Optional[dict] = None, data_root: Optional[str] = None, data_prefix: dict = dict( img_path='', img_path2='', seg_map_path=''), filter_cfg: Optional[dict] = None, indices: Optional[Union[int, Sequence[int]]] = None, serialize_data: bool = True, pipeline: List[Union[dict, Callable]] = [], test_mode: bool = False, lazy_init: bool = False, max_refetch: int = 1000, ignore_index: int = 255, reduce_zero_label: bool = False, backend_args: Optional[dict] = None) -> None: self.img_suffix = img_suffix self.img_suffix2 = img_suffix2 self.seg_map_suffix = seg_map_suffix self.ignore_index = ignore_index self.reduce_zero_label = reduce_zero_label self.backend_args = backend_args.copy() if backend_args else None self.data_root = data_root self.data_prefix = copy.copy(data_prefix) self.ann_file = ann_file self.filter_cfg = copy.deepcopy(filter_cfg) self._indices = indices self.serialize_data = serialize_data self.test_mode = test_mode self.max_refetch = max_refetch self.data_list: List[dict] = [] self.data_bytes: np.ndarray # Set meta information. self._metainfo = self._load_metainfo(copy.deepcopy(metainfo)) # Get label map for custom classes new_classes = self._metainfo.get('classes', None) self.label_map = self.get_label_map(new_classes) self._metainfo.update( dict( label_map=self.label_map, reduce_zero_label=self.reduce_zero_label)) # Update palette based on label map or generate palette # if it is not defined updated_palette = self._update_palette() self._metainfo.update(dict(palette=updated_palette)) # Join paths. if self.data_root is not None: self._join_prefix() # Build pipeline. self.pipeline = Compose(pipeline) # Full initialize the dataset. if not lazy_init: self.full_init() if test_mode: assert self._metainfo.get('classes') is not None, \ 'dataset metainfo `classes` should be specified when testing' @classmethod def get_label_map(cls, new_classes: Optional[Sequence] = None ) -> Union[Dict, None]: """Require label mapping. The ``label_map`` is a dictionary, its keys are the old label ids and its values are the new label ids, and is used for changing pixel labels in load_annotations. If and only if old classes in cls.METAINFO is not equal to new classes in self._metainfo and nether of them is not None, `label_map` is not None. Args: new_classes (list, tuple, optional): The new classes name from metainfo. Default to None. Returns: dict, optional: The mapping from old classes in cls.METAINFO to new classes in self._metainfo """ old_classes = cls.METAINFO.get('classes', None) if (new_classes is not None and old_classes is not None and list(new_classes) != list(old_classes)): label_map = {} if not set(new_classes).issubset(cls.METAINFO['classes']): raise ValueError( f'new classes {new_classes} is not a ' f'subset of classes {old_classes} in METAINFO.') for i, c in enumerate(old_classes): if c not in new_classes: label_map[i] = 255 else: label_map[i] = new_classes.index(c) return label_map else: return None def _update_palette(self) -> list: """Update palette after loading metainfo. If length of palette is equal to classes, just return the palette. If palette is not defined, it will randomly generate a palette. If classes is updated by customer, it will return the subset of palette. Returns: Sequence: Palette for current dataset. """ palette = self._metainfo.get('palette', []) classes = self._metainfo.get('classes', []) # palette does match classes if len(palette) == len(classes): return palette if len(palette) == 0: # Get random state before set seed, and restore # random state later. # It will prevent loss of randomness, as the palette # may be different in each iteration if not specified. # See: https://github.com/open-mmlab/mmdetection/issues/5844 state = np.random.get_state() np.random.seed(42) # random palette new_palette = np.random.randint( 0, 255, size=(len(classes), 3)).tolist() np.random.set_state(state) elif len(palette) >= len(classes) and self.label_map is not None: new_palette = [] # return subset of palette for old_id, new_id in sorted( self.label_map.items(), key=lambda x: x[1]): if new_id != 255: new_palette.append(palette[old_id]) new_palette = type(palette)(new_palette) else: raise ValueError('palette does not match classes ' f'as metainfo is {self._metainfo}.') return new_palette def load_data_list(self) -> List[dict]: """Load annotation from directory or annotation file. Returns: list[dict]: All data info of dataset. """ data_list = [] img_dir = self.data_prefix.get('img_path', None) img_dir2 = self.data_prefix.get('img_path2', None) ann_dir = self.data_prefix.get('seg_map_path', None) if osp.isfile(self.ann_file): lines = mmengine.list_from_file( self.ann_file, backend_args=self.backend_args) for line in lines: img_name = line.strip() if '.' in osp.basename(img_name): img_name, img_ext = osp.splitext(img_name) self.img_suffix = img_ext self.img_suffix2 = img_ext data_info = dict( img_path=osp.join(img_dir, img_name + self.img_suffix), img_path2=osp.join(img_dir2, img_name + self.img_suffix2)) if ann_dir is not None: seg_map = img_name + self.seg_map_suffix data_info['seg_map_path'] = osp.join(ann_dir, seg_map) data_info['label_map'] = self.label_map data_info['reduce_zero_label'] = self.reduce_zero_label data_info['seg_fields'] = [] data_list.append(data_info) else: for img in fileio.list_dir_or_file( dir_path=img_dir, list_dir=False, suffix=self.img_suffix, recursive=True, backend_args=self.backend_args): if '.' in osp.basename(img): img, img_ext = osp.splitext(img) self.img_suffix = img_ext self.img_suffix2 = img_ext data_info = dict( img_path=osp.join(img_dir, img + self.img_suffix), img_path2=osp.join(img_dir2, img + self.img_suffix2)) if ann_dir is not None: seg_map = img + self.seg_map_suffix data_info['seg_map_path'] = osp.join(ann_dir, seg_map) data_info['label_map'] = self.label_map data_info['reduce_zero_label'] = self.reduce_zero_label data_info['seg_fields'] = [] data_list.append(data_info) data_list = sorted(data_list, key=lambda x: x['img_path']) return data_list