|
|
|
import math |
|
import warnings |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import build_norm_layer |
|
from mmcv.cnn.bricks.drop import build_dropout |
|
from mmcv.cnn.bricks.transformer import FFN |
|
from mmengine.model import BaseModule, ModuleList |
|
from mmengine.model.weight_init import (constant_init, normal_init, |
|
trunc_normal_init) |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from mmseg.models.backbones.mit import EfficientMultiheadAttention |
|
from mmseg.registry import MODELS |
|
from ..utils.embed import PatchEmbed |
|
|
|
|
|
class GlobalSubsampledAttention(EfficientMultiheadAttention): |
|
"""Global Sub-sampled Attention (Spatial Reduction Attention) |
|
|
|
This module is modified from EfficientMultiheadAttention, |
|
which is a module from mmseg.models.backbones.mit.py. |
|
Specifically, there is no difference between |
|
`GlobalSubsampledAttention` and `EfficientMultiheadAttention`, |
|
`GlobalSubsampledAttention` is built as a brand new class |
|
because it is renamed as `Global sub-sampled attention (GSA)` |
|
in paper. |
|
|
|
|
|
Args: |
|
embed_dims (int): The embedding dimension. |
|
num_heads (int): Parallel attention heads. |
|
attn_drop (float): A Dropout layer on attn_output_weights. |
|
Default: 0.0. |
|
proj_drop (float): A Dropout layer after `nn.MultiheadAttention`. |
|
Default: 0.0. |
|
dropout_layer (obj:`ConfigDict`): The dropout_layer used |
|
when adding the shortcut. Default: None. |
|
batch_first (bool): Key, Query and Value are shape of |
|
(batch, n, embed_dims) |
|
or (n, batch, embed_dims). Default: False. |
|
qkv_bias (bool): enable bias for qkv if True. Default: True. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN'). |
|
sr_ratio (int): The ratio of spatial reduction of GSA of PCPVT. |
|
Default: 1. |
|
init_cfg (dict, optional): The Config for initialization. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
embed_dims, |
|
num_heads, |
|
attn_drop=0., |
|
proj_drop=0., |
|
dropout_layer=None, |
|
batch_first=True, |
|
qkv_bias=True, |
|
norm_cfg=dict(type='LN'), |
|
sr_ratio=1, |
|
init_cfg=None): |
|
super().__init__( |
|
embed_dims, |
|
num_heads, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
dropout_layer=dropout_layer, |
|
batch_first=batch_first, |
|
qkv_bias=qkv_bias, |
|
norm_cfg=norm_cfg, |
|
sr_ratio=sr_ratio, |
|
init_cfg=init_cfg) |
|
|
|
|
|
class GSAEncoderLayer(BaseModule): |
|
"""Implements one encoder layer with GSA. |
|
|
|
Args: |
|
embed_dims (int): The feature dimension. |
|
num_heads (int): Parallel attention heads. |
|
feedforward_channels (int): The hidden dimension for FFNs. |
|
drop_rate (float): Probability of an element to be zeroed |
|
after the feed forward layer. Default: 0.0. |
|
attn_drop_rate (float): The drop out rate for attention layer. |
|
Default: 0.0. |
|
drop_path_rate (float): Stochastic depth rate. Default 0.0. |
|
num_fcs (int): The number of fully-connected layers for FFNs. |
|
Default: 2. |
|
qkv_bias (bool): Enable bias for qkv if True. Default: True |
|
act_cfg (dict): The activation config for FFNs. |
|
Default: dict(type='GELU'). |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN'). |
|
sr_ratio (float): Kernel_size of conv in Attention modules. Default: 1. |
|
init_cfg (dict, optional): The Config for initialization. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
embed_dims, |
|
num_heads, |
|
feedforward_channels, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
num_fcs=2, |
|
qkv_bias=True, |
|
act_cfg=dict(type='GELU'), |
|
norm_cfg=dict(type='LN'), |
|
sr_ratio=1., |
|
init_cfg=None): |
|
super().__init__(init_cfg=init_cfg) |
|
|
|
self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1] |
|
self.attn = GlobalSubsampledAttention( |
|
embed_dims=embed_dims, |
|
num_heads=num_heads, |
|
attn_drop=attn_drop_rate, |
|
proj_drop=drop_rate, |
|
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), |
|
qkv_bias=qkv_bias, |
|
norm_cfg=norm_cfg, |
|
sr_ratio=sr_ratio) |
|
|
|
self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1] |
|
self.ffn = FFN( |
|
embed_dims=embed_dims, |
|
feedforward_channels=feedforward_channels, |
|
num_fcs=num_fcs, |
|
ffn_drop=drop_rate, |
|
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), |
|
act_cfg=act_cfg, |
|
add_identity=False) |
|
|
|
self.drop_path = build_dropout( |
|
dict(type='DropPath', drop_prob=drop_path_rate) |
|
) if drop_path_rate > 0. else nn.Identity() |
|
|
|
def forward(self, x, hw_shape): |
|
x = x + self.drop_path(self.attn(self.norm1(x), hw_shape, identity=0.)) |
|
x = x + self.drop_path(self.ffn(self.norm2(x))) |
|
return x |
|
|
|
|
|
class LocallyGroupedSelfAttention(BaseModule): |
|
"""Locally-grouped Self Attention (LSA) module. |
|
|
|
Args: |
|
embed_dims (int): Number of input channels. |
|
num_heads (int): Number of attention heads. Default: 8 |
|
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. |
|
Default: False. |
|
qk_scale (float | None, optional): Override default qk scale of |
|
head_dim ** -0.5 if set. Default: None. |
|
attn_drop_rate (float, optional): Dropout ratio of attention weight. |
|
Default: 0.0 |
|
proj_drop_rate (float, optional): Dropout ratio of output. Default: 0. |
|
window_size(int): Window size of LSA. Default: 1. |
|
init_cfg (dict, optional): The Config for initialization. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
embed_dims, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop_rate=0., |
|
proj_drop_rate=0., |
|
window_size=1, |
|
init_cfg=None): |
|
super().__init__(init_cfg=init_cfg) |
|
|
|
assert embed_dims % num_heads == 0, f'dim {embed_dims} should be ' \ |
|
f'divided by num_heads ' \ |
|
f'{num_heads}.' |
|
self.embed_dims = embed_dims |
|
self.num_heads = num_heads |
|
head_dim = embed_dims // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop_rate) |
|
self.proj = nn.Linear(embed_dims, embed_dims) |
|
self.proj_drop = nn.Dropout(proj_drop_rate) |
|
self.window_size = window_size |
|
|
|
def forward(self, x, hw_shape): |
|
b, n, c = x.shape |
|
h, w = hw_shape |
|
x = x.view(b, h, w, c) |
|
|
|
|
|
pad_l = pad_t = 0 |
|
pad_r = (self.window_size - w % self.window_size) % self.window_size |
|
pad_b = (self.window_size - h % self.window_size) % self.window_size |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
|
|
|
|
Hp, Wp = x.shape[1:-1] |
|
_h, _w = Hp // self.window_size, Wp // self.window_size |
|
mask = torch.zeros((1, Hp, Wp), device=x.device) |
|
mask[:, -pad_b:, :].fill_(1) |
|
mask[:, :, -pad_r:].fill_(1) |
|
|
|
|
|
x = x.reshape(b, _h, self.window_size, _w, self.window_size, |
|
c).transpose(2, 3) |
|
mask = mask.reshape(1, _h, self.window_size, _w, |
|
self.window_size).transpose(2, 3).reshape( |
|
1, _h * _w, |
|
self.window_size * self.window_size) |
|
|
|
attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, |
|
float(-1000.0)).masked_fill( |
|
attn_mask == 0, float(0.0)) |
|
|
|
|
|
qkv = self.qkv(x).reshape(b, _h * _w, |
|
self.window_size * self.window_size, 3, |
|
self.num_heads, c // self.num_heads).permute( |
|
3, 0, 1, 4, 2, 5) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn + attn_mask.unsqueeze(2) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
attn = (attn @ v).transpose(2, 3).reshape(b, _h, _w, self.window_size, |
|
self.window_size, c) |
|
x = attn.transpose(2, 3).reshape(b, _h * self.window_size, |
|
_w * self.window_size, c) |
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :h, :w, :].contiguous() |
|
|
|
x = x.reshape(b, n, c) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class LSAEncoderLayer(BaseModule): |
|
"""Implements one encoder layer in Twins-SVT. |
|
|
|
Args: |
|
embed_dims (int): The feature dimension. |
|
num_heads (int): Parallel attention heads. |
|
feedforward_channels (int): The hidden dimension for FFNs. |
|
drop_rate (float): Probability of an element to be zeroed |
|
after the feed forward layer. Default: 0.0. |
|
attn_drop_rate (float, optional): Dropout ratio of attention weight. |
|
Default: 0.0 |
|
drop_path_rate (float): Stochastic depth rate. Default 0.0. |
|
num_fcs (int): The number of fully-connected layers for FFNs. |
|
Default: 2. |
|
qkv_bias (bool): Enable bias for qkv if True. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of |
|
head_dim ** -0.5 if set. Default: None. |
|
act_cfg (dict): The activation config for FFNs. |
|
Default: dict(type='GELU'). |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN'). |
|
window_size (int): Window size of LSA. Default: 1. |
|
init_cfg (dict, optional): The Config for initialization. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
embed_dims, |
|
num_heads, |
|
feedforward_channels, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
num_fcs=2, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
act_cfg=dict(type='GELU'), |
|
norm_cfg=dict(type='LN'), |
|
window_size=1, |
|
init_cfg=None): |
|
|
|
super().__init__(init_cfg=init_cfg) |
|
|
|
self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1] |
|
self.attn = LocallyGroupedSelfAttention(embed_dims, num_heads, |
|
qkv_bias, qk_scale, |
|
attn_drop_rate, drop_rate, |
|
window_size) |
|
|
|
self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1] |
|
self.ffn = FFN( |
|
embed_dims=embed_dims, |
|
feedforward_channels=feedforward_channels, |
|
num_fcs=num_fcs, |
|
ffn_drop=drop_rate, |
|
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), |
|
act_cfg=act_cfg, |
|
add_identity=False) |
|
|
|
self.drop_path = build_dropout( |
|
dict(type='DropPath', drop_prob=drop_path_rate) |
|
) if drop_path_rate > 0. else nn.Identity() |
|
|
|
def forward(self, x, hw_shape): |
|
x = x + self.drop_path(self.attn(self.norm1(x), hw_shape)) |
|
x = x + self.drop_path(self.ffn(self.norm2(x))) |
|
return x |
|
|
|
|
|
class ConditionalPositionEncoding(BaseModule): |
|
"""The Conditional Position Encoding (CPE) module. |
|
|
|
The CPE is the implementation of 'Conditional Positional Encodings |
|
for Vision Transformers <https://arxiv.org/abs/2102.10882>'_. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
embed_dims (int): The feature dimension. Default: 768. |
|
stride (int): Stride of conv layer. Default: 1. |
|
""" |
|
|
|
def __init__(self, in_channels, embed_dims=768, stride=1, init_cfg=None): |
|
super().__init__(init_cfg=init_cfg) |
|
self.proj = nn.Conv2d( |
|
in_channels, |
|
embed_dims, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias=True, |
|
groups=embed_dims) |
|
self.stride = stride |
|
|
|
def forward(self, x, hw_shape): |
|
b, n, c = x.shape |
|
h, w = hw_shape |
|
feat_token = x |
|
cnn_feat = feat_token.transpose(1, 2).view(b, c, h, w) |
|
if self.stride == 1: |
|
x = self.proj(cnn_feat) + cnn_feat |
|
else: |
|
x = self.proj(cnn_feat) |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
@MODELS.register_module() |
|
class PCPVT(BaseModule): |
|
"""The backbone of Twins-PCPVT. |
|
|
|
This backbone is the implementation of `Twins: Revisiting the Design |
|
of Spatial Attention in Vision Transformers |
|
<https://arxiv.org/abs/1512.03385>`_. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. Default: 3. |
|
embed_dims (list): Embedding dimension. Default: [64, 128, 256, 512]. |
|
patch_sizes (list): The patch sizes. Default: [4, 2, 2, 2]. |
|
strides (list): The strides. Default: [4, 2, 2, 2]. |
|
num_heads (int): Number of attention heads. Default: [1, 2, 4, 8]. |
|
mlp_ratios (int): Ratio of mlp hidden dim to embedding dim. |
|
Default: [4, 4, 4, 4]. |
|
out_indices (tuple[int]): Output from which stages. |
|
Default: (0, 1, 2, 3). |
|
qkv_bias (bool): Enable bias for qkv if True. Default: False. |
|
drop_rate (float): Probability of an element to be zeroed. |
|
Default 0. |
|
attn_drop_rate (float): The drop out rate for attention layer. |
|
Default 0.0 |
|
drop_path_rate (float): Stochastic depth rate. Default 0.0 |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN') |
|
depths (list): Depths of each stage. Default [3, 4, 6, 3] |
|
sr_ratios (list): Kernel_size of conv in each Attn module in |
|
Transformer encoder layer. Default: [8, 4, 2, 1]. |
|
norm_after_stage(bool): Add extra norm. Default False. |
|
init_cfg (dict, optional): The Config for initialization. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels=3, |
|
embed_dims=[64, 128, 256, 512], |
|
patch_sizes=[4, 2, 2, 2], |
|
strides=[4, 2, 2, 2], |
|
num_heads=[1, 2, 4, 8], |
|
mlp_ratios=[4, 4, 4, 4], |
|
out_indices=(0, 1, 2, 3), |
|
qkv_bias=False, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
norm_cfg=dict(type='LN'), |
|
depths=[3, 4, 6, 3], |
|
sr_ratios=[8, 4, 2, 1], |
|
norm_after_stage=False, |
|
pretrained=None, |
|
init_cfg=None): |
|
super().__init__(init_cfg=init_cfg) |
|
assert not (init_cfg and pretrained), \ |
|
'init_cfg and pretrained cannot be set at the same time' |
|
if isinstance(pretrained, str): |
|
warnings.warn('DeprecationWarning: pretrained is deprecated, ' |
|
'please use "init_cfg" instead') |
|
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) |
|
elif pretrained is not None: |
|
raise TypeError('pretrained must be a str or None') |
|
self.depths = depths |
|
|
|
|
|
self.patch_embeds = ModuleList() |
|
self.position_encoding_drops = ModuleList() |
|
self.layers = ModuleList() |
|
|
|
for i in range(len(depths)): |
|
self.patch_embeds.append( |
|
PatchEmbed( |
|
in_channels=in_channels if i == 0 else embed_dims[i - 1], |
|
embed_dims=embed_dims[i], |
|
conv_type='Conv2d', |
|
kernel_size=patch_sizes[i], |
|
stride=strides[i], |
|
padding='corner', |
|
norm_cfg=norm_cfg)) |
|
|
|
self.position_encoding_drops.append(nn.Dropout(p=drop_rate)) |
|
|
|
self.position_encodings = ModuleList([ |
|
ConditionalPositionEncoding(embed_dim, embed_dim) |
|
for embed_dim in embed_dims |
|
]) |
|
|
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) |
|
] |
|
cur = 0 |
|
|
|
for k in range(len(depths)): |
|
_block = ModuleList([ |
|
GSAEncoderLayer( |
|
embed_dims=embed_dims[k], |
|
num_heads=num_heads[k], |
|
feedforward_channels=mlp_ratios[k] * embed_dims[k], |
|
attn_drop_rate=attn_drop_rate, |
|
drop_rate=drop_rate, |
|
drop_path_rate=dpr[cur + i], |
|
num_fcs=2, |
|
qkv_bias=qkv_bias, |
|
act_cfg=dict(type='GELU'), |
|
norm_cfg=dict(type='LN'), |
|
sr_ratio=sr_ratios[k]) for i in range(depths[k]) |
|
]) |
|
self.layers.append(_block) |
|
cur += depths[k] |
|
|
|
self.norm_name, norm = build_norm_layer( |
|
norm_cfg, embed_dims[-1], postfix=1) |
|
|
|
self.out_indices = out_indices |
|
self.norm_after_stage = norm_after_stage |
|
if self.norm_after_stage: |
|
self.norm_list = ModuleList() |
|
for dim in embed_dims: |
|
self.norm_list.append(build_norm_layer(norm_cfg, dim)[1]) |
|
|
|
def init_weights(self): |
|
if self.init_cfg is not None: |
|
super().init_weights() |
|
else: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_init(m, std=.02, bias=0.) |
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): |
|
constant_init(m, val=1.0, bias=0.) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[ |
|
1] * m.out_channels |
|
fan_out //= m.groups |
|
normal_init( |
|
m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0) |
|
|
|
def forward(self, x): |
|
outputs = list() |
|
|
|
b = x.shape[0] |
|
|
|
for i in range(len(self.depths)): |
|
x, hw_shape = self.patch_embeds[i](x) |
|
h, w = hw_shape |
|
x = self.position_encoding_drops[i](x) |
|
for j, blk in enumerate(self.layers[i]): |
|
x = blk(x, hw_shape) |
|
if j == 0: |
|
x = self.position_encodings[i](x, hw_shape) |
|
if self.norm_after_stage: |
|
x = self.norm_list[i](x) |
|
x = x.reshape(b, h, w, -1).permute(0, 3, 1, 2).contiguous() |
|
|
|
if i in self.out_indices: |
|
outputs.append(x) |
|
|
|
return tuple(outputs) |
|
|
|
|
|
@MODELS.register_module() |
|
class SVT(PCPVT): |
|
"""The backbone of Twins-SVT. |
|
|
|
This backbone is the implementation of `Twins: Revisiting the Design |
|
of Spatial Attention in Vision Transformers |
|
<https://arxiv.org/abs/1512.03385>`_. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. Default: 3. |
|
embed_dims (list): Embedding dimension. Default: [64, 128, 256, 512]. |
|
patch_sizes (list): The patch sizes. Default: [4, 2, 2, 2]. |
|
strides (list): The strides. Default: [4, 2, 2, 2]. |
|
num_heads (int): Number of attention heads. Default: [1, 2, 4]. |
|
mlp_ratios (int): Ratio of mlp hidden dim to embedding dim. |
|
Default: [4, 4, 4]. |
|
out_indices (tuple[int]): Output from which stages. |
|
Default: (0, 1, 2, 3). |
|
qkv_bias (bool): Enable bias for qkv if True. Default: False. |
|
drop_rate (float): Dropout rate. Default 0. |
|
attn_drop_rate (float): Dropout ratio of attention weight. |
|
Default 0.0 |
|
drop_path_rate (float): Stochastic depth rate. Default 0.2. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN') |
|
depths (list): Depths of each stage. Default [4, 4, 4]. |
|
sr_ratios (list): Kernel_size of conv in each Attn module in |
|
Transformer encoder layer. Default: [4, 2, 1]. |
|
windiow_sizes (list): Window size of LSA. Default: [7, 7, 7], |
|
input_features_slice(bool): Input features need slice. Default: False. |
|
norm_after_stage(bool): Add extra norm. Default False. |
|
strides (list): Strides in patch-Embedding modules. Default: (2, 2, 2) |
|
init_cfg (dict, optional): The Config for initialization. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels=3, |
|
embed_dims=[64, 128, 256], |
|
patch_sizes=[4, 2, 2, 2], |
|
strides=[4, 2, 2, 2], |
|
num_heads=[1, 2, 4], |
|
mlp_ratios=[4, 4, 4], |
|
out_indices=(0, 1, 2, 3), |
|
qkv_bias=False, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
norm_cfg=dict(type='LN'), |
|
depths=[4, 4, 4], |
|
sr_ratios=[4, 2, 1], |
|
windiow_sizes=[7, 7, 7], |
|
norm_after_stage=True, |
|
pretrained=None, |
|
init_cfg=None): |
|
super().__init__(in_channels, embed_dims, patch_sizes, strides, |
|
num_heads, mlp_ratios, out_indices, qkv_bias, |
|
drop_rate, attn_drop_rate, drop_path_rate, norm_cfg, |
|
depths, sr_ratios, norm_after_stage, pretrained, |
|
init_cfg) |
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) |
|
] |
|
|
|
for k in range(len(depths)): |
|
for i in range(depths[k]): |
|
if i % 2 == 0: |
|
self.layers[k][i] = \ |
|
LSAEncoderLayer( |
|
embed_dims=embed_dims[k], |
|
num_heads=num_heads[k], |
|
feedforward_channels=mlp_ratios[k] * embed_dims[k], |
|
drop_rate=drop_rate, |
|
attn_drop_rate=attn_drop_rate, |
|
drop_path_rate=dpr[sum(depths[:k])+i], |
|
qkv_bias=qkv_bias, |
|
window_size=windiow_sizes[k]) |
|
|