|
|
|
import os.path as osp |
|
from typing import List |
|
|
|
import mmengine.fileio as fileio |
|
|
|
from mmseg.registry import DATASETS |
|
from .basesegdataset import BaseSegDataset |
|
|
|
|
|
@DATASETS.register_module() |
|
class NYUDataset(BaseSegDataset): |
|
"""NYU depth estimation dataset. The file structure should be. |
|
|
|
.. code-block:: none |
|
|
|
βββ data |
|
β βββ nyu |
|
β β βββ images |
|
β β β βββ train |
|
β β β β βββ scene_xxx.jpg |
|
β β β β βββ ... |
|
β β β βββ test |
|
β β βββ annotations |
|
β β β βββ train |
|
β β β β βββ scene_xxx.png |
|
β β β β βββ ... |
|
β β β βββ test |
|
|
|
Args: |
|
ann_file (str): Annotation file path. Defaults to ''. |
|
metainfo (dict, optional): Meta information for dataset, such as |
|
specify classes to load. Defaults to None. |
|
data_root (str, optional): The root directory for ``data_prefix`` and |
|
``ann_file``. Defaults to None. |
|
data_prefix (dict, optional): Prefix for training data. Defaults to |
|
dict(img_path='images', depth_map_path='annotations'). |
|
img_suffix (str): Suffix of images. Default: '.jpg' |
|
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' |
|
filter_cfg (dict, optional): Config for filter data. Defaults to None. |
|
indices (int or Sequence[int], optional): Support using first few |
|
data in annotation file to facilitate training/testing on a smaller |
|
dataset. Defaults to None which means using all ``data_infos``. |
|
serialize_data (bool, optional): Whether to hold memory using |
|
serialized objects, when enabled, data loader workers can use |
|
shared RAM from master process instead of making a copy. Defaults |
|
to True. |
|
pipeline (list, optional): Processing pipeline. Defaults to []. |
|
test_mode (bool, optional): ``test_mode=True`` means in test phase. |
|
Defaults to False. |
|
lazy_init (bool, optional): Whether to load annotation during |
|
instantiation. In some cases, such as visualization, only the meta |
|
information of the dataset is needed, which is not necessary to |
|
load annotation file. ``Basedataset`` can skip load annotations to |
|
save time by set ``lazy_init=True``. Defaults to False. |
|
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a |
|
None img. The maximum extra number of cycles to get a valid |
|
image. Defaults to 1000. |
|
ignore_index (int): The label index to be ignored. Default: 255 |
|
reduce_zero_label (bool): Whether to mark label zero as ignored. |
|
Default to False. |
|
backend_args (dict, Optional): Arguments to instantiate a file backend. |
|
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm |
|
for details. Defaults to None. |
|
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required. |
|
""" |
|
METAINFO = dict( |
|
classes=('printer_room', 'bathroom', 'living_room', 'study', |
|
'conference_room', 'study_room', 'kitchen', 'home_office', |
|
'bedroom', 'dinette', 'playroom', 'indoor_balcony', |
|
'laundry_room', 'basement', 'excercise_room', 'foyer', |
|
'home_storage', 'cafe', 'furniture_store', 'office_kitchen', |
|
'student_lounge', 'dining_room', 'reception_room', |
|
'computer_lab', 'classroom', 'office', 'bookstore')) |
|
|
|
def __init__(self, |
|
data_prefix=dict( |
|
img_path='images', depth_map_path='annotations'), |
|
img_suffix='.jpg', |
|
depth_map_suffix='.png', |
|
**kwargs) -> None: |
|
super().__init__( |
|
data_prefix=data_prefix, |
|
img_suffix=img_suffix, |
|
seg_map_suffix=depth_map_suffix, |
|
**kwargs) |
|
|
|
def _get_category_id_from_filename(self, image_fname: str) -> int: |
|
"""Retrieve the category ID from the given image filename.""" |
|
image_fname = osp.basename(image_fname) |
|
position = image_fname.find(next(filter(str.isdigit, image_fname)), 0) |
|
categoty_name = image_fname[:position - 1] |
|
if categoty_name not in self._metainfo['classes']: |
|
return -1 |
|
else: |
|
return self._metainfo['classes'].index(categoty_name) |
|
|
|
def load_data_list(self) -> List[dict]: |
|
"""Load annotation from directory or annotation file. |
|
|
|
Returns: |
|
list[dict]: All data info of dataset. |
|
""" |
|
data_list = [] |
|
img_dir = self.data_prefix.get('img_path', None) |
|
ann_dir = self.data_prefix.get('depth_map_path', None) |
|
|
|
_suffix_len = len(self.img_suffix) |
|
for img in fileio.list_dir_or_file( |
|
dir_path=img_dir, |
|
list_dir=False, |
|
suffix=self.img_suffix, |
|
recursive=True, |
|
backend_args=self.backend_args): |
|
data_info = dict(img_path=osp.join(img_dir, img)) |
|
if ann_dir is not None: |
|
depth_map = img[:-_suffix_len] + self.seg_map_suffix |
|
data_info['depth_map_path'] = osp.join(ann_dir, depth_map) |
|
data_info['seg_fields'] = [] |
|
data_info['category_id'] = self._get_category_id_from_filename(img) |
|
data_list.append(data_info) |
|
data_list = sorted(data_list, key=lambda x: x['img_path']) |
|
return data_list |
|
|