TTP / mmseg /apis /utils.py
KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
1.19 kB
# Copyright (c) OpenMMLab. All rights reserved.
from collections import defaultdict
from typing import Sequence, Union
import numpy as np
from mmengine.dataset import Compose
from mmengine.model import BaseModel
ImageType = Union[str, np.ndarray, Sequence[str], Sequence[np.ndarray]]
def _preprare_data(imgs: ImageType, model: BaseModel):
cfg = model.cfg
for t in cfg.test_pipeline:
if t.get('type') == 'LoadAnnotations':
cfg.test_pipeline.remove(t)
is_batch = True
if not isinstance(imgs, (list, tuple)):
imgs = [imgs]
is_batch = False
if isinstance(imgs[0], np.ndarray):
cfg.test_pipeline[0]['type'] = 'LoadImageFromNDArray'
# TODO: Consider using the singleton pattern to avoid building
# a pipeline for each inference
pipeline = Compose(cfg.test_pipeline)
data = defaultdict(list)
for img in imgs:
if isinstance(img, np.ndarray):
data_ = dict(img=img)
else:
data_ = dict(img_path=img)
data_ = pipeline(data_)
data['inputs'].append(data_['inputs'])
data['data_samples'].append(data_['data_samples'])
return data, is_batch