# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path from statistics import median import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np from mmengine.config import Config from mmengine.registry import init_default_scope from mmengine.utils import ProgressBar from prettytable import PrettyTable from mmyolo.registry import DATASETS from mmyolo.utils.misc import show_data_classes def parse_args(): parser = argparse.ArgumentParser( description='Distribution of categories and bbox instances') parser.add_argument('--config', default='configs/ins_seg/seg_sam_queryprompt_ssdd_bs2_last_config.py', help='config file path') parser.add_argument( '--val-dataset', default=False, action='store_true', help='The default train_dataset.' 'To change it to val_dataset, enter "--val-dataset"') parser.add_argument( '--class-name', default=None, type=str, help='Display specific class, e.g., "bicycle"') parser.add_argument( '--area-rule', default=None, type=int, nargs='+', help='Redefine area rules,but no more than three numbers.' ' e.g., 30 70 125') parser.add_argument( '--func', default='show_bbox_num', type=str, choices=[ 'show_bbox_num', 'show_bbox_wh', 'show_bbox_wh_ratio', 'show_bbox_area' ], help='Dataset analysis function selection.') parser.add_argument( '--out-dir', default='./results/dataset_analysis', type=str, help='Output directory of dataset analysis visualization results,' ' Save in "./dataset_analysis/" by default') args = parser.parse_args() return args def show_bbox_num(cfg, out_dir, fig_set, class_name, class_num): """Display the distribution map of categories and number of bbox instances.""" print('\n\nDrawing bbox_num figure:') # Draw designs fig = plt.figure( figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300) plt.bar(class_name, class_num, align='center') # Draw titles, labels and so on for x, y in enumerate(class_num): plt.text(x, y, '%s' % y, ha='center', fontsize=fig_set['fontsize'] + 3) plt.xticks(rotation=fig_set['xticks_angle']) plt.xlabel('Category Name') plt.ylabel('Num of instances') plt.title(cfg.dataset_type) # Save figure if not os.path.exists(out_dir): os.makedirs(out_dir) out_name = fig_set['out_name'] fig.savefig( f'{out_dir}/{out_name}_bbox_num.jpg', bbox_inches='tight', pad_inches=0.1) # Save Image plt.close() print(f'End and save in {out_dir}/{out_name}_bbox_num.jpg') def show_bbox_wh(out_dir, fig_set, class_bbox_w, class_bbox_h, class_name): """Display the width and height distribution of categories and bbox instances.""" print('\n\nDrawing bbox_wh figure:') # Draw designs fig, ax = plt.subplots( figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300) # Set the position of the map and label on the x-axis positions_w = list(range(0, 12 * len(class_name), 12)) positions_h = list(range(6, 12 * len(class_name), 12)) positions_x_label = list(range(3, 12 * len(class_name) + 1, 12)) ax.violinplot( class_bbox_w, positions_w, showmeans=True, showmedians=True, widths=4) ax.violinplot( class_bbox_h, positions_h, showmeans=True, showmedians=True, widths=4) # Draw titles, labels and so on plt.xticks(rotation=fig_set['xticks_angle']) plt.ylabel('The width or height of bbox') plt.xlabel('Class name') plt.title('Width or height distribution of classes and bbox instances') # Draw the max, min and median of wide data in violin chart for i in range(len(class_bbox_w)): plt.text( positions_w[i], median(class_bbox_w[i]), f'{"%.2f" % median(class_bbox_w[i])}', ha='center', fontsize=fig_set['fontsize']) plt.text( positions_w[i], max(class_bbox_w[i]), f'{"%.2f" % max(class_bbox_w[i])}', ha='center', fontsize=fig_set['fontsize']) plt.text( positions_w[i], min(class_bbox_w[i]), f'{"%.2f" % min(class_bbox_w[i])}', ha='center', fontsize=fig_set['fontsize']) # Draw the max, min and median of height data in violin chart for i in range(len(positions_h)): plt.text( positions_h[i], median(class_bbox_h[i]), f'{"%.2f" % median(class_bbox_h[i])}', ha='center', fontsize=fig_set['fontsize']) plt.text( positions_h[i], max(class_bbox_h[i]), f'{"%.2f" % max(class_bbox_h[i])}', ha='center', fontsize=fig_set['fontsize']) plt.text( positions_h[i], min(class_bbox_h[i]), f'{"%.2f" % min(class_bbox_h[i])}', ha='center', fontsize=fig_set['fontsize']) # Draw Legend plt.setp(ax, xticks=positions_x_label, xticklabels=class_name) labels = ['bbox_w', 'bbox_h'] colors = ['steelblue', 'darkorange'] patches = [ mpatches.Patch(color=colors[i], label=f'{labels[i]:s}') for i in range(len(colors)) ] ax = plt.gca() box = ax.get_position() ax.set_position([box.x0, box.y0, box.width, box.height * 0.8]) ax.legend(loc='upper center', handles=patches, ncol=2) # Save figure if not os.path.exists(out_dir): os.makedirs(out_dir) out_name = fig_set['out_name'] fig.savefig( f'{out_dir}/{out_name}_bbox_wh.jpg', bbox_inches='tight', pad_inches=0.1) # Save Image plt.close() print(f'End and save in {out_dir}/{out_name}_bbox_wh.jpg') def show_bbox_wh_ratio(out_dir, fig_set, class_name, class_bbox_ratio): """Display the distribution map of category and bbox instance width and height ratio.""" print('\n\nDrawing bbox_wh_ratio figure:') # Draw designs fig, ax = plt.subplots( figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300) # Set the position of the map and label on the x-axis positions = list(range(0, 6 * len(class_name), 6)) ax.violinplot( class_bbox_ratio, positions, showmeans=True, showmedians=True, widths=5) # Draw titles, labels and so on plt.xticks(rotation=fig_set['xticks_angle']) plt.ylabel('Ratio of width to height of bbox') plt.xlabel('Class name') plt.title('Width to height ratio distribution of class and bbox instances') # Draw the max, min and median of wide data in violin chart for i in range(len(class_bbox_ratio)): plt.text( positions[i], median(class_bbox_ratio[i]), f'{"%.2f" % median(class_bbox_ratio[i])}', ha='center', fontsize=fig_set['fontsize']) plt.text( positions[i], max(class_bbox_ratio[i]), f'{"%.2f" % max(class_bbox_ratio[i])}', ha='center', fontsize=fig_set['fontsize']) plt.text( positions[i], min(class_bbox_ratio[i]), f'{"%.2f" % min(class_bbox_ratio[i])}', ha='center', fontsize=fig_set['fontsize']) # Set the position of the map and label on the x-axis plt.setp(ax, xticks=positions, xticklabels=class_name) # Save figure if not os.path.exists(out_dir): os.makedirs(out_dir) out_name = fig_set['out_name'] fig.savefig( f'{out_dir}/{out_name}_bbox_ratio.jpg', bbox_inches='tight', pad_inches=0.1) # Save Image plt.close() print(f'End and save in {out_dir}/{out_name}_bbox_ratio.jpg') def show_bbox_area(out_dir, fig_set, area_rule, class_name, bbox_area_num): """Display the distribution map of category and bbox instance area based on the rules of large, medium and small objects.""" print('\n\nDrawing bbox_area figure:') # Set the direct distance of each label and the width of each histogram # Set the required labels and colors positions = np.arange(0, 2 * len(class_name), 2) width = 0.4 labels = ['Small', 'Mediun', 'Large', 'Huge'] colors = ['#438675', '#F7B469', '#6BA6DA', '#913221'] # Draw designs fig = plt.figure( figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300) for i in range(len(area_rule) - 1): area_num = [bbox_area_num[idx][i] for idx in range(len(class_name))] plt.bar( positions + width * i, area_num, width, label=labels[i], color=colors[i]) for idx, (x, y) in enumerate(zip(positions.tolist(), area_num)): plt.text( x + width * i, y, y, ha='center', fontsize=fig_set['fontsize'] - 1) # Draw titles, labels and so on plt.xticks(rotation=fig_set['xticks_angle']) plt.xticks(positions + width * ((len(area_rule) - 2) / 2), class_name) plt.ylabel('Class Area') plt.xlabel('Class Name') plt.title( 'Area and number of large, medium and small objects of each class') # Set and Draw Legend patches = [ mpatches.Patch(color=colors[i], label=f'{labels[i]:s}') for i in range(len(area_rule) - 1) ] ax = plt.gca() box = ax.get_position() ax.set_position([box.x0, box.y0, box.width, box.height * 0.8]) ax.legend(loc='upper center', handles=patches, ncol=len(area_rule) - 1) # Save figure if not os.path.exists(out_dir): os.makedirs(out_dir) out_name = fig_set['out_name'] fig.savefig( f'{out_dir}/{out_name}_bbox_area.jpg', bbox_inches='tight', pad_inches=0.1) # Save Image plt.close() print(f'End and save in {out_dir}/{out_name}_bbox_area.jpg') def show_class_list(classes, class_num): """Print the data of the class obtained by the current run.""" print('\n\nThe information obtained is as follows:') class_info = PrettyTable() class_info.title = 'Information of dataset class' # List Print Settings # If the quantity is too large, 25 rows will be displayed in each column if len(classes) < 25: class_info.add_column('Class name', classes) class_info.add_column('Bbox num', class_num) elif len(classes) % 25 != 0 and len(classes) > 25: col_num = int(len(classes) / 25) + 1 class_nums = class_num.tolist() class_name_list = list(classes) for i in range(0, (col_num * 25) - len(classes)): class_name_list.append('') class_nums.append('') for i in range(0, len(class_name_list), 25): class_info.add_column('Class name', class_name_list[i:i + 25]) class_info.add_column('Bbox num', class_nums[i:i + 25]) # Align display data to the left class_info.align['Class name'] = 'l' class_info.align['Bbox num'] = 'l' print(class_info) def show_data_list(args, area_rule): """Print run setup information.""" print('\n\nPrint current running information:') data_info = PrettyTable() data_info.title = 'Dataset information' # Print the corresponding information according to the settings if args.val_dataset is False: data_info.add_column('Dataset type', ['train_dataset']) elif args.val_dataset is True: data_info.add_column('Dataset type', ['val_dataset']) if args.class_name is None: data_info.add_column('Class name', ['All classes']) else: data_info.add_column('Class name', [args.class_name]) if args.func is None: data_info.add_column('Function', ['All function']) else: data_info.add_column('Function', [args.func]) data_info.add_column('Area rule', [area_rule]) print(data_info) def main(): args = parse_args() cfg = Config.fromfile(args.config) init_default_scope(cfg.get('default_scope', 'mmpl')) def replace_pipeline_to_none(cfg): """Recursively iterate over all dataset(or datasets) and set their pipelines to none.Datasets are mean ConcatDataset. Recursively terminates only when all dataset(or datasets) have been traversed """ if cfg.get('dataset', None) is None and cfg.get('datasets', None) is None: return dataset = cfg.dataset if cfg.get('dataset', None) else cfg.datasets if isinstance(dataset, list): for item in dataset: item.pipeline = None elif dataset.get('pipeline', None): dataset.pipeline = None else: replace_pipeline_to_none(dataset) # 1.Build Dataset dataset_cfg = cfg.get('datamodule_cfg') if args.val_dataset is False: replace_pipeline_to_none(dataset_cfg.train_loader) dataset = DATASETS.build(dataset_cfg.train_loader.dataset) else: replace_pipeline_to_none(dataset_cfg.val_loader) dataset = DATASETS.build(dataset_cfg.val_loader.dataset) # 2.Prepare data # Drawing settings fig_all_set = { 'figsize': [35, 18], 'fontsize': int(10 - 0.08 * len(dataset.metainfo['classes'])), 'xticks_angle': 70, 'out_name': cfg.dataset_type } fig_one_set = { 'figsize': [15, 10], 'fontsize': 10, 'xticks_angle': 0, 'out_name': args.class_name } # Call the category name and save address if args.class_name is None: classes = dataset.metainfo['classes'] classes_idx = [i for i in range(len(classes))] fig_set = fig_all_set elif args.class_name in dataset.metainfo['classes']: classes = [args.class_name] classes_idx = [dataset.metainfo['classes'].index(args.class_name)] fig_set = fig_one_set else: data_classes = dataset.metainfo['classes'] show_data_classes(data_classes) raise RuntimeError(f'Expected args.class_name to be one of the list,' f'but got "{args.class_name}"') # Building Area Rules if args.area_rule is None: area_rule = [0, 32, 96, 1e5] elif args.area_rule and len(args.area_rule) <= 3: area_rules = [0] + args.area_rule + [1e5] area_rule = sorted(area_rules) else: raise RuntimeError( f'Expected the "{args.area_rule}" to be e.g. 30 60 120, ' 'and no more than three numbers.') # Build arrays or lists to store data for each category class_num = np.zeros((len(classes), ), dtype=np.int64) class_bbox = [[] for _ in classes] class_name = [] class_bbox_w = [] class_bbox_h = [] class_bbox_ratio = [] bbox_area_num = [] instance_num = [] show_data_list(args, area_rule) # Get the quantity and bbox data corresponding to each category print('\nRead the information of each picture in the dataset:') progress_bar = ProgressBar(len(dataset)) counts_instances = 0 for index in range(len(dataset)): instances = dataset[index]['instances'] # if len(instances) > 100: # counts_instances += 1 # # continue # labels = [instance['bbox_label'] for instance in instances] # counts = np.bincount(labels) # label_id = np.argmax(counts) # # Harbor Large_Vehicle Small_Vehicle ship # print(f'the class is {dataset.metainfo["classes"][label_id]}') # print('The number of bboxes in the picture is greater than 100') instance_num.append(len(instances)) for instance in dataset[index]['instances']: if instance[ 'bbox_label'] in classes_idx and args.class_name is None: class_num[instance['bbox_label']] += 1 class_bbox[instance['bbox_label']].append(instance['bbox']) elif instance['bbox_label'] in classes_idx and args.class_name: class_num[0] += 1 class_bbox[0].append(instance['bbox']) progress_bar.update() show_class_list(classes, class_num) print(f'The number of bboxes in the picture is greater than 120: {counts_instances}') # Get the width, height and area of bbox corresponding to each category print('\nRead bbox information in each class:') progress_bar_classes = ProgressBar(len(classes)) for idx, (classes, classes_idx) in enumerate(zip(classes, classes_idx)): bbox = np.array(class_bbox[idx]) bbox_area_nums = np.zeros((len(area_rule) - 1, ), dtype=np.int64) if len(bbox) > 0: bbox_wh = bbox[:, 2:4] - bbox[:, 0:2] bbox_ratio = bbox_wh[:, 0] / bbox_wh[:, 1] bbox_area = bbox_wh[:, 0] * bbox_wh[:, 1] class_bbox_w.append(bbox_wh[:, 0].tolist()) class_bbox_h.append(bbox_wh[:, 1].tolist()) class_bbox_ratio.append(bbox_ratio.tolist()) # The area rule, there is an section between two numbers for i in range(len(area_rule) - 1): bbox_area_nums[i] = np.logical_and( bbox_area >= area_rule[i]**2, bbox_area < area_rule[i + 1]**2).sum() elif len(bbox) == 0: class_bbox_w.append([0]) class_bbox_h.append([0]) class_bbox_ratio.append([0]) class_name.append(classes) bbox_area_num.append(bbox_area_nums.tolist()) progress_bar_classes.update() # 3.draw Dataset Information if args.func is None: show_bbox_num(cfg, args.out_dir, fig_set, class_name, class_num) show_bbox_wh(args.out_dir, fig_set, class_bbox_w, class_bbox_h, class_name) show_bbox_wh_ratio(args.out_dir, fig_set, class_name, class_bbox_ratio) show_bbox_area(args.out_dir, fig_set, area_rule, class_name, bbox_area_num) elif args.func == 'show_bbox_num': show_bbox_num(cfg, args.out_dir, fig_set, class_name, class_num) print('num_instances_info:') print('max num_instances=', max(instance_num)) print('min num_instances=', min(instance_num)) print('mean num_instances=', np.mean(instance_num)) elif args.func == 'show_bbox_wh': show_bbox_wh(args.out_dir, fig_set, class_bbox_w, class_bbox_h, class_name) elif args.func == 'show_bbox_wh_ratio': show_bbox_wh_ratio(args.out_dir, fig_set, class_name, class_bbox_ratio) elif args.func == 'show_bbox_area': show_bbox_area(args.out_dir, fig_set, area_rule, class_name, bbox_area_num) else: raise RuntimeError( 'Please enter the correct func name, e.g., show_bbox_num') if __name__ == '__main__': main()