# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import torch import torch.nn as nn from mmdet.utils import ConfigType, OptMultiConfig from mmyolo.models.layers.yolo_bricks import SPPFBottleneck from mmyolo.registry import MODELS from ..layers import BepC3StageBlock, RepStageBlock from ..utils import make_round from .base_backbone import BaseBackbone @MODELS.register_module() class YOLOv6EfficientRep(BaseBackbone): """EfficientRep backbone used in YOLOv6. Args: arch (str): Architecture of BaseDarknet, from {P5, P6}. Defaults to P5. plugins (list[dict]): List of plugins for stages, each dict contains: - cfg (dict, required): Cfg dict to build plugin. - stages (tuple[bool], optional): Stages to apply plugin, length should be same as 'num_stages'. deepen_factor (float): Depth multiplier, multiply number of blocks in CSP layer by this amount. Defaults to 1.0. widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Defaults to 1.0. input_channels (int): Number of input image channels. Defaults to 3. out_indices (Tuple[int]): Output from which stages. Defaults to (2, 3, 4). frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Defaults to -1. norm_cfg (dict): Dictionary to construct and config norm layer. Defaults to dict(type='BN', requires_grad=True). act_cfg (dict): Config dict for activation layer. Defaults to dict(type='LeakyReLU', negative_slope=0.1). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False. block_cfg (dict): Config dict for the block used to build each layer. Defaults to dict(type='RepVGGBlock'). init_cfg (Union[dict, list[dict]], optional): Initialization config dict. Defaults to None. Example: >>> from mmyolo.models import YOLOv6EfficientRep >>> import torch >>> model = YOLOv6EfficientRep() >>> model.eval() >>> inputs = torch.rand(1, 3, 416, 416) >>> level_outputs = model(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) ... (1, 256, 52, 52) (1, 512, 26, 26) (1, 1024, 13, 13) """ # From left to right: # in_channels, out_channels, num_blocks, use_spp arch_settings = { 'P5': [[64, 128, 6, False], [128, 256, 12, False], [256, 512, 18, False], [512, 1024, 6, True]] } def __init__(self, arch: str = 'P5', plugins: Union[dict, List[dict]] = None, deepen_factor: float = 1.0, widen_factor: float = 1.0, input_channels: int = 3, out_indices: Tuple[int] = (2, 3, 4), frozen_stages: int = -1, norm_cfg: ConfigType = dict( type='BN', momentum=0.03, eps=0.001), act_cfg: ConfigType = dict(type='ReLU', inplace=True), norm_eval: bool = False, block_cfg: ConfigType = dict(type='RepVGGBlock'), init_cfg: OptMultiConfig = None): self.block_cfg = block_cfg super().__init__( self.arch_settings[arch], deepen_factor, widen_factor, input_channels=input_channels, out_indices=out_indices, plugins=plugins, frozen_stages=frozen_stages, norm_cfg=norm_cfg, act_cfg=act_cfg, norm_eval=norm_eval, init_cfg=init_cfg) def build_stem_layer(self) -> nn.Module: """Build a stem layer.""" block_cfg = self.block_cfg.copy() block_cfg.update( dict( in_channels=self.input_channels, out_channels=int(self.arch_setting[0][0] * self.widen_factor), kernel_size=3, stride=2, )) return MODELS.build(block_cfg) def build_stage_layer(self, stage_idx: int, setting: list) -> list: """Build a stage layer. Args: stage_idx (int): The index of a stage layer. setting (list): The architecture setting of a stage layer. """ in_channels, out_channels, num_blocks, use_spp = setting in_channels = int(in_channels * self.widen_factor) out_channels = int(out_channels * self.widen_factor) num_blocks = make_round(num_blocks, self.deepen_factor) rep_stage_block = RepStageBlock( in_channels=out_channels, out_channels=out_channels, num_blocks=num_blocks, block_cfg=self.block_cfg, ) block_cfg = self.block_cfg.copy() block_cfg.update( dict( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2)) stage = [] ef_block = nn.Sequential(MODELS.build(block_cfg), rep_stage_block) stage.append(ef_block) if use_spp: spp = SPPFBottleneck( in_channels=out_channels, out_channels=out_channels, kernel_sizes=5, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) stage.append(spp) return stage def init_weights(self): if self.init_cfg is None: """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() else: super().init_weights() @MODELS.register_module() class YOLOv6CSPBep(YOLOv6EfficientRep): """CSPBep backbone used in YOLOv6. Args: arch (str): Architecture of BaseDarknet, from {P5, P6}. Defaults to P5. plugins (list[dict]): List of plugins for stages, each dict contains: - cfg (dict, required): Cfg dict to build plugin. - stages (tuple[bool], optional): Stages to apply plugin, length should be same as 'num_stages'. deepen_factor (float): Depth multiplier, multiply number of blocks in CSP layer by this amount. Defaults to 1.0. widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Defaults to 1.0. input_channels (int): Number of input image channels. Defaults to 3. out_indices (Tuple[int]): Output from which stages. Defaults to (2, 3, 4). frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Defaults to -1. norm_cfg (dict): Dictionary to construct and config norm layer. Defaults to dict(type='BN', requires_grad=True). act_cfg (dict): Config dict for activation layer. Defaults to dict(type='LeakyReLU', negative_slope=0.1). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False. block_cfg (dict): Config dict for the block used to build each layer. Defaults to dict(type='RepVGGBlock'). block_act_cfg (dict): Config dict for activation layer used in each stage. Defaults to dict(type='SiLU', inplace=True). init_cfg (Union[dict, list[dict]], optional): Initialization config dict. Defaults to None. Example: >>> from mmyolo.models import YOLOv6CSPBep >>> import torch >>> model = YOLOv6CSPBep() >>> model.eval() >>> inputs = torch.rand(1, 3, 416, 416) >>> level_outputs = model(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) ... (1, 256, 52, 52) (1, 512, 26, 26) (1, 1024, 13, 13) """ # From left to right: # in_channels, out_channels, num_blocks, use_spp arch_settings = { 'P5': [[64, 128, 6, False], [128, 256, 12, False], [256, 512, 18, False], [512, 1024, 6, True]] } def __init__(self, arch: str = 'P5', plugins: Union[dict, List[dict]] = None, deepen_factor: float = 1.0, widen_factor: float = 1.0, input_channels: int = 3, hidden_ratio: float = 0.5, out_indices: Tuple[int] = (2, 3, 4), frozen_stages: int = -1, norm_cfg: ConfigType = dict( type='BN', momentum=0.03, eps=0.001), act_cfg: ConfigType = dict(type='SiLU', inplace=True), norm_eval: bool = False, block_cfg: ConfigType = dict(type='ConvWrapper'), init_cfg: OptMultiConfig = None): self.hidden_ratio = hidden_ratio super().__init__( arch=arch, deepen_factor=deepen_factor, widen_factor=widen_factor, input_channels=input_channels, out_indices=out_indices, plugins=plugins, frozen_stages=frozen_stages, norm_cfg=norm_cfg, act_cfg=act_cfg, norm_eval=norm_eval, block_cfg=block_cfg, init_cfg=init_cfg) def build_stage_layer(self, stage_idx: int, setting: list) -> list: """Build a stage layer. Args: stage_idx (int): The index of a stage layer. setting (list): The architecture setting of a stage layer. """ in_channels, out_channels, num_blocks, use_spp = setting in_channels = int(in_channels * self.widen_factor) out_channels = int(out_channels * self.widen_factor) num_blocks = make_round(num_blocks, self.deepen_factor) rep_stage_block = BepC3StageBlock( in_channels=out_channels, out_channels=out_channels, num_blocks=num_blocks, hidden_ratio=self.hidden_ratio, block_cfg=self.block_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) block_cfg = self.block_cfg.copy() block_cfg.update( dict( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2)) stage = [] ef_block = nn.Sequential(MODELS.build(block_cfg), rep_stage_block) stage.append(ef_block) if use_spp: spp = SPPFBottleneck( in_channels=out_channels, out_channels=out_channels, kernel_sizes=5, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) stage.append(spp) return stage