# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import torch.nn as nn from mmcv.cnn import ConvModule from mmdet.utils import ConfigType, OptMultiConfig from mmyolo.models.backbones import BaseBackbone from mmyolo.models.layers.yolo_bricks import CSPResLayer from mmyolo.registry import MODELS @MODELS.register_module() class PPYOLOECSPResNet(BaseBackbone): """CSP-ResNet backbone used in PPYOLOE. Args: arch (str): Architecture of CSPNeXt, from {P5, P6}. Defaults to P5. deepen_factor (float): Depth multiplier, multiply number of blocks in CSP layer by this amount. Defaults to 1.0. widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Defaults to 1.0. out_indices (Sequence[int]): Output from which stages. Defaults to (2, 3, 4). frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Defaults to -1. plugins (list[dict]): List of plugins for stages, each dict contains: - cfg (dict, required): Cfg dict to build plugin. - stages (tuple[bool], optional): Stages to apply plugin, length should be same as 'num_stages'. arch_ovewrite (list): Overwrite default arch settings. Defaults to None. block_cfg (dict): Config dict for block. Defaults to dict(type='PPYOLOEBasicBlock', shortcut=True, use_alpha=True) norm_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and config norm layer. Defaults to dict(type='BN', momentum=0.1, eps=1e-5). act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer. Defaults to dict(type='SiLU', inplace=True). attention_cfg (dict): Config dict for `EffectiveSELayer`. Defaults to dict(type='EffectiveSELayer', act_cfg=dict(type='HSigmoid')). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`]): Initialization config dict. use_large_stem (bool): Whether to use large stem layer. Defaults to False. """ # From left to right: # in_channels, out_channels, num_blocks arch_settings = { 'P5': [[64, 128, 3], [128, 256, 6], [256, 512, 6], [512, 1024, 3]] } def __init__(self, arch: str = 'P5', deepen_factor: float = 1.0, widen_factor: float = 1.0, input_channels: int = 3, out_indices: Tuple[int] = (2, 3, 4), frozen_stages: int = -1, plugins: Union[dict, List[dict]] = None, arch_ovewrite: dict = None, block_cfg: ConfigType = dict( type='PPYOLOEBasicBlock', shortcut=True, use_alpha=True), norm_cfg: ConfigType = dict( type='BN', momentum=0.1, eps=1e-5), act_cfg: ConfigType = dict(type='SiLU', inplace=True), attention_cfg: ConfigType = dict( type='EffectiveSELayer', act_cfg=dict(type='HSigmoid')), norm_eval: bool = False, init_cfg: OptMultiConfig = None, use_large_stem: bool = False): arch_setting = self.arch_settings[arch] if arch_ovewrite: arch_setting = arch_ovewrite arch_setting = [[ int(in_channels * widen_factor), int(out_channels * widen_factor), round(num_blocks * deepen_factor) ] for in_channels, out_channels, num_blocks in arch_setting] self.block_cfg = block_cfg self.use_large_stem = use_large_stem self.attention_cfg = attention_cfg super().__init__( arch_setting, deepen_factor, widen_factor, input_channels=input_channels, out_indices=out_indices, plugins=plugins, frozen_stages=frozen_stages, norm_cfg=norm_cfg, act_cfg=act_cfg, norm_eval=norm_eval, init_cfg=init_cfg) def build_stem_layer(self) -> nn.Module: """Build a stem layer.""" if self.use_large_stem: stem = nn.Sequential( ConvModule( self.input_channels, self.arch_setting[0][0] // 2, 3, stride=2, padding=1, act_cfg=self.act_cfg, norm_cfg=self.norm_cfg), ConvModule( self.arch_setting[0][0] // 2, self.arch_setting[0][0] // 2, 3, stride=1, padding=1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg), ConvModule( self.arch_setting[0][0] // 2, self.arch_setting[0][0], 3, stride=1, padding=1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg)) else: stem = nn.Sequential( ConvModule( self.input_channels, self.arch_setting[0][0] // 2, 3, stride=2, padding=1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg), ConvModule( self.arch_setting[0][0] // 2, self.arch_setting[0][0], 3, stride=1, padding=1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg)) return stem def build_stage_layer(self, stage_idx: int, setting: list) -> list: """Build a stage layer. Args: stage_idx (int): The index of a stage layer. setting (list): The architecture setting of a stage layer. """ in_channels, out_channels, num_blocks = setting cspres_layer = CSPResLayer( in_channels=in_channels, out_channels=out_channels, num_block=num_blocks, block_cfg=self.block_cfg, stride=2, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, attention_cfg=self.attention_cfg, use_spp=False) return [cspres_layer]