# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.utils import is_tuple_of from .make_divisible import make_divisible class SELayer(nn.Module): """Squeeze-and-Excitation Module. Args: channels (int): The input (and output) channels of the SE layer. ratio (int): Squeeze ratio in SELayer, the intermediate channel will be ``int(channels/ratio)``. Default: 16. conv_cfg (None or dict): Config dict for convolution layer. Default: None, which means using conv2d. act_cfg (dict or Sequence[dict]): Config dict for activation layer. If act_cfg is a dict, two activation layers will be configured by this dict. If act_cfg is a sequence of dicts, the first activation layer will be configured by the first dict and the second activation layer will be configured by the second dict. Default: (dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, divisor=6.0)). """ def __init__(self, channels, ratio=16, conv_cfg=None, act_cfg=(dict(type='ReLU'), dict(type='HSigmoid', bias=3.0, divisor=6.0))): super().__init__() if isinstance(act_cfg, dict): act_cfg = (act_cfg, act_cfg) assert len(act_cfg) == 2 assert is_tuple_of(act_cfg, dict) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.conv1 = ConvModule( in_channels=channels, out_channels=make_divisible(channels // ratio, 8), kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[0]) self.conv2 = ConvModule( in_channels=make_divisible(channels // ratio, 8), out_channels=channels, kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[1]) def forward(self, x): out = self.global_avgpool(x) out = self.conv1(out) out = self.conv2(out) return x * out