# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Sequence import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import build_conv_layer, build_norm_layer from mmengine.model import BaseModule from mmengine.utils import to_2tuple class AdaptivePadding(nn.Module): """Applies padding to input (if needed) so that input can get fully covered by filter you specified. It support two modes "same" and "corner". The "same" mode is same with "SAME" padding mode in TensorFlow, pad zero around input. The "corner" mode would pad zero to bottom right. Args: kernel_size (int | tuple): Size of the kernel: stride (int | tuple): Stride of the filter. Default: 1: dilation (int | tuple): Spacing between kernel elements. Default: 1. padding (str): Support "same" and "corner", "corner" mode would pad zero to bottom right, and "same" mode would pad zero around input. Default: "corner". Example: >>> kernel_size = 16 >>> stride = 16 >>> dilation = 1 >>> input = torch.rand(1, 1, 15, 17) >>> adap_pad = AdaptivePadding( >>> kernel_size=kernel_size, >>> stride=stride, >>> dilation=dilation, >>> padding="corner") >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32) >>> input = torch.rand(1, 1, 16, 17) >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32) """ def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): super().__init__() assert padding in ('same', 'corner') kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) dilation = to_2tuple(dilation) self.padding = padding self.kernel_size = kernel_size self.stride = stride self.dilation = dilation def get_pad_shape(self, input_shape): input_h, input_w = input_shape kernel_h, kernel_w = self.kernel_size stride_h, stride_w = self.stride output_h = math.ceil(input_h / stride_h) output_w = math.ceil(input_w / stride_w) pad_h = max((output_h - 1) * stride_h + (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) pad_w = max((output_w - 1) * stride_w + (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) return pad_h, pad_w def forward(self, x): pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) if pad_h > 0 or pad_w > 0: if self.padding == 'corner': x = F.pad(x, [0, pad_w, 0, pad_h]) elif self.padding == 'same': x = F.pad(x, [ pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2 ]) return x class PatchEmbed(BaseModule): """Image to Patch Embedding. We use a conv layer to implement PatchEmbed. Args: in_channels (int): The num of input channels. Default: 3 embed_dims (int): The dimensions of embedding. Default: 768 conv_type (str): The config dict for embedding conv layer type selection. Default: "Conv2d". kernel_size (int): The kernel_size of embedding conv. Default: 16. stride (int, optional): The slide stride of embedding conv. Default: None (Would be set as `kernel_size`). padding (int | tuple | string ): The padding length of embedding conv. When it is a string, it means the mode of adaptive padding, support "same" and "corner" now. Default: "corner". dilation (int): The dilation rate of embedding conv. Default: 1. bias (bool): Bias of embed conv. Default: True. norm_cfg (dict, optional): Config dict for normalization layer. Default: None. input_size (int | tuple | None): The size of input, which will be used to calculate the out size. Only work when `dynamic_size` is False. Default: None. init_cfg (`mmengine.ConfigDict`, optional): The Config for initialization. Default: None. """ def __init__(self, in_channels=3, embed_dims=768, conv_type='Conv2d', kernel_size=16, stride=None, padding='corner', dilation=1, bias=True, norm_cfg=None, input_size=None, init_cfg=None): super().__init__(init_cfg=init_cfg) self.embed_dims = embed_dims if stride is None: stride = kernel_size kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) dilation = to_2tuple(dilation) if isinstance(padding, str): self.adap_padding = AdaptivePadding( kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding) # disable the padding of conv padding = 0 else: self.adap_padding = None padding = to_2tuple(padding) self.projection = build_conv_layer( dict(type=conv_type), in_channels=in_channels, out_channels=embed_dims, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) if norm_cfg is not None: self.norm = build_norm_layer(norm_cfg, embed_dims)[1] else: self.norm = None if input_size: input_size = to_2tuple(input_size) # `init_out_size` would be used outside to # calculate the num_patches # when `use_abs_pos_embed` outside self.init_input_size = input_size if self.adap_padding: pad_h, pad_w = self.adap_padding.get_pad_shape(input_size) input_h, input_w = input_size input_h = input_h + pad_h input_w = input_w + pad_w input_size = (input_h, input_w) # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html h_out = (input_size[0] + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) // stride[0] + 1 w_out = (input_size[1] + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) // stride[1] + 1 self.init_out_size = (h_out, w_out) else: self.init_input_size = None self.init_out_size = None def forward(self, x): """ Args: x (Tensor): Has shape (B, C, H, W). In most case, C is 3. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, out_h * out_w, embed_dims) - out_size (tuple[int]): Spatial shape of x, arrange as (out_h, out_w). """ if self.adap_padding: x = self.adap_padding(x) x = self.projection(x) out_size = (x.shape[2], x.shape[3]) x = x.flatten(2).transpose(1, 2) if self.norm is not None: x = self.norm(x) return x, out_size class PatchMerging(BaseModule): """Merge patch feature map. This layer groups feature map by kernel_size, and applies norm and linear layers to the grouped feature map. Our implementation uses `nn.Unfold` to merge patch, which is about 25% faster than original implementation. Instead, we need to modify pretrained models for compatibility. Args: in_channels (int): The num of input channels. out_channels (int): The num of output channels. kernel_size (int | tuple, optional): the kernel size in the unfold layer. Defaults to 2. stride (int | tuple, optional): the stride of the sliding blocks in the unfold layer. Default: None. (Would be set as `kernel_size`) padding (int | tuple | string ): The padding length of embedding conv. When it is a string, it means the mode of adaptive padding, support "same" and "corner" now. Default: "corner". dilation (int | tuple, optional): dilation parameter in the unfold layer. Default: 1. bias (bool, optional): Whether to add bias in linear layer or not. Defaults: False. norm_cfg (dict, optional): Config dict for normalization layer. Default: dict(type='LN'). init_cfg (dict, optional): The extra config for initialization. Default: None. """ def __init__(self, in_channels, out_channels, kernel_size=2, stride=None, padding='corner', dilation=1, bias=False, norm_cfg=dict(type='LN'), init_cfg=None): super().__init__(init_cfg=init_cfg) self.in_channels = in_channels self.out_channels = out_channels if stride: stride = stride else: stride = kernel_size kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) dilation = to_2tuple(dilation) if isinstance(padding, str): self.adap_padding = AdaptivePadding( kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding) # disable the padding of unfold padding = 0 else: self.adap_padding = None padding = to_2tuple(padding) self.sampler = nn.Unfold( kernel_size=kernel_size, dilation=dilation, padding=padding, stride=stride) sample_dim = kernel_size[0] * kernel_size[1] * in_channels if norm_cfg is not None: self.norm = build_norm_layer(norm_cfg, sample_dim)[1] else: self.norm = None self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) def forward(self, x, input_size): """ Args: x (Tensor): Has shape (B, H*W, C_in). input_size (tuple[int]): The spatial shape of x, arrange as (H, W). Default: None. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) - out_size (tuple[int]): Spatial shape of x, arrange as (Merged_H, Merged_W). """ B, L, C = x.shape assert isinstance(input_size, Sequence), f'Expect ' \ f'input_size is ' \ f'`Sequence` ' \ f'but get {input_size}' H, W = input_size assert L == H * W, 'input feature has wrong size' x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W # Use nn.Unfold to merge patch. About 25% faster than original method, # but need to modify pretrained model for compatibility if self.adap_padding: x = self.adap_padding(x) H, W = x.shape[-2:] x = self.sampler(x) # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * (self.sampler.kernel_size[0] - 1) - 1) // self.sampler.stride[0] + 1 out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * (self.sampler.kernel_size[1] - 1) - 1) // self.sampler.stride[1] + 1 output_size = (out_h, out_w) x = x.transpose(1, 2) # B, H/2*W/2, 4*C x = self.norm(x) if self.norm else x x = self.reduction(x) return x, output_size