# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from torch import Tensor from mmseg.registry import MODELS from mmseg.utils import OptConfigType class BasicBlock(BaseModule): """Basic block from `ResNet `_. Args: in_channels (int): Input channels. channels (int): Output channels. stride (int): Stride of the first block. Default: 1. downsample (nn.Module, optional): Downsample operation on identity. Default: None. norm_cfg (dict, optional): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict, optional): Config dict for activation layer in ConvModule. Default: dict(type='ReLU', inplace=True). act_cfg_out (dict, optional): Config dict for activation layer at the last of the block. Default: None. init_cfg (dict, optional): Initialization config dict. Default: None. """ expansion = 1 def __init__(self, in_channels: int, channels: int, stride: int = 1, downsample: nn.Module = None, norm_cfg: OptConfigType = dict(type='BN'), act_cfg: OptConfigType = dict(type='ReLU', inplace=True), act_cfg_out: OptConfigType = dict(type='ReLU', inplace=True), init_cfg: OptConfigType = None): super().__init__(init_cfg) self.conv1 = ConvModule( in_channels, channels, kernel_size=3, stride=stride, padding=1, norm_cfg=norm_cfg, act_cfg=act_cfg) self.conv2 = ConvModule( channels, channels, kernel_size=3, padding=1, norm_cfg=norm_cfg, act_cfg=None) self.downsample = downsample if act_cfg_out: self.act = MODELS.build(act_cfg_out) def forward(self, x: Tensor) -> Tensor: residual = x out = self.conv1(x) out = self.conv2(out) if self.downsample: residual = self.downsample(x) out += residual if hasattr(self, 'act'): out = self.act(out) return out class Bottleneck(BaseModule): """Bottleneck block from `ResNet `_. Args: in_channels (int): Input channels. channels (int): Output channels. stride (int): Stride of the first block. Default: 1. downsample (nn.Module, optional): Downsample operation on identity. Default: None. norm_cfg (dict, optional): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict, optional): Config dict for activation layer in ConvModule. Default: dict(type='ReLU', inplace=True). act_cfg_out (dict, optional): Config dict for activation layer at the last of the block. Default: None. init_cfg (dict, optional): Initialization config dict. Default: None. """ expansion = 2 def __init__(self, in_channels: int, channels: int, stride: int = 1, downsample: Optional[nn.Module] = None, norm_cfg: OptConfigType = dict(type='BN'), act_cfg: OptConfigType = dict(type='ReLU', inplace=True), act_cfg_out: OptConfigType = None, init_cfg: OptConfigType = None): super().__init__(init_cfg) self.conv1 = ConvModule( in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=act_cfg) self.conv2 = ConvModule( channels, channels, 3, stride, 1, norm_cfg=norm_cfg, act_cfg=act_cfg) self.conv3 = ConvModule( channels, channels * self.expansion, 1, norm_cfg=norm_cfg, act_cfg=None) if act_cfg_out: self.act = MODELS.build(act_cfg_out) self.downsample = downsample def forward(self, x: Tensor) -> Tensor: residual = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) if self.downsample: residual = self.downsample(x) out += residual if hasattr(self, 'act'): out = self.act(out) return out