# Copyright (c) OpenMMLab. All rights reserved. """Modified from https://github.com/JunMa11/SegLoss/blob/master/losses_pytorch/dice_loss.py#L333 (Apache-2.0 License)""" import torch import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import get_class_weight, weighted_loss @weighted_loss def tversky_loss(pred, target, valid_mask, alpha=0.3, beta=0.7, smooth=1, class_weight=None, ignore_index=255): assert pred.shape[0] == target.shape[0] total_loss = 0 num_classes = pred.shape[1] for i in range(num_classes): if i != ignore_index: tversky_loss = binary_tversky_loss( pred[:, i], target[..., i], valid_mask=valid_mask, alpha=alpha, beta=beta, smooth=smooth) if class_weight is not None: tversky_loss *= class_weight[i] total_loss += tversky_loss return total_loss / num_classes @weighted_loss def binary_tversky_loss(pred, target, valid_mask, alpha=0.3, beta=0.7, smooth=1): assert pred.shape[0] == target.shape[0] pred = pred.reshape(pred.shape[0], -1) target = target.reshape(target.shape[0], -1) valid_mask = valid_mask.reshape(valid_mask.shape[0], -1) TP = torch.sum(torch.mul(pred, target) * valid_mask, dim=1) FP = torch.sum(torch.mul(pred, 1 - target) * valid_mask, dim=1) FN = torch.sum(torch.mul(1 - pred, target) * valid_mask, dim=1) tversky = (TP + smooth) / (TP + alpha * FP + beta * FN + smooth) return 1 - tversky @LOSSES.register_module() class TverskyLoss(nn.Module): """TverskyLoss. This loss is proposed in `Tversky loss function for image segmentation using 3D fully convolutional deep networks. `_. Args: smooth (float): A float number to smooth loss, and avoid NaN error. Default: 1. class_weight (list[float] | str, optional): Weight of each class. If in str format, read them from a file. Defaults to None. loss_weight (float, optional): Weight of the loss. Default to 1.0. ignore_index (int | None): The label index to be ignored. Default: 255. alpha(float, in [0, 1]): The coefficient of false positives. Default: 0.3. beta (float, in [0, 1]): The coefficient of false negatives. Default: 0.7. Note: alpha + beta = 1. loss_name (str, optional): Name of the loss item. If you want this loss item to be included into the backward graph, `loss_` must be the prefix of the name. Defaults to 'loss_tversky'. """ def __init__(self, smooth=1, class_weight=None, loss_weight=1.0, ignore_index=255, alpha=0.3, beta=0.7, loss_name='loss_tversky'): super().__init__() self.smooth = smooth self.class_weight = get_class_weight(class_weight) self.loss_weight = loss_weight self.ignore_index = ignore_index assert (alpha + beta == 1.0), 'Sum of alpha and beta but be 1.0!' self.alpha = alpha self.beta = beta self._loss_name = loss_name def forward(self, pred, target, **kwargs): if self.class_weight is not None: class_weight = pred.new_tensor(self.class_weight) else: class_weight = None pred = F.softmax(pred, dim=1) num_classes = pred.shape[1] one_hot_target = F.one_hot( torch.clamp(target.long(), 0, num_classes - 1), num_classes=num_classes) valid_mask = (target != self.ignore_index).long() loss = self.loss_weight * tversky_loss( pred, one_hot_target, valid_mask=valid_mask, alpha=self.alpha, beta=self.beta, smooth=self.smooth, class_weight=class_weight, ignore_index=self.ignore_index) return loss @property def loss_name(self): """Loss Name. This function must be implemented and will return the name of this loss function. This name will be used to combine different loss items by simple sum operation. In addition, if you want this loss item to be included into the backward graph, `loss_` must be the prefix of the name. Returns: str: The name of this loss item. """ return self._loss_name