# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import warnings from typing import Optional, Sequence import mmcv import mmengine.fileio as fileio from mmengine.hooks import Hook from mmengine.runner import Runner from mmseg.registry import HOOKS from mmseg.structures import SegDataSample from mmseg.visualization import SegLocalVisualizer @HOOKS.register_module() class SegVisualizationHook(Hook): """Segmentation Visualization Hook. Used to visualize validation and testing process prediction results. In the testing phase: 1. If ``show`` is True, it means that only the prediction results are visualized without storing data, so ``vis_backends`` needs to be excluded. Args: draw (bool): whether to draw prediction results. If it is False, it means that no drawing will be done. Defaults to False. interval (int): The interval of visualization. Defaults to 50. show (bool): Whether to display the drawn image. Default to False. wait_time (float): The interval of show (s). Defaults to 0. backend_args (dict, Optional): Arguments to instantiate a file backend. See https://mmengine.readthedocs.io/en/latest/api/fileio.htm for details. Defaults to None. Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required. """ def __init__(self, draw: bool = False, interval: int = 50, show: bool = False, wait_time: float = 0., backend_args: Optional[dict] = None): self._visualizer: SegLocalVisualizer = \ SegLocalVisualizer.get_current_instance() self.interval = interval self.show = show if self.show: # No need to think about vis backends. self._visualizer._vis_backends = {} warnings.warn('The show is True, it means that only ' 'the prediction results are visualized ' 'without storing data, so vis_backends ' 'needs to be excluded.') self.wait_time = wait_time self.backend_args = backend_args.copy() if backend_args else None self.draw = draw if not self.draw: warnings.warn('The draw is False, it means that the ' 'hook for visualization will not take ' 'effect. The results will NOT be ' 'visualized or stored.') def _after_iter(self, runner: Runner, batch_idx: int, data_batch: dict, outputs: Sequence[SegDataSample], mode: str = 'val') -> None: """Run after every ``self.interval`` validation iterations. Args: runner (:obj:`Runner`): The runner of the validation process. batch_idx (int): The index of the current batch in the val loop. data_batch (dict): Data from dataloader. outputs (Sequence[:obj:`SegDataSample`]): Outputs from model. mode (str): mode (str): Current mode of runner. Defaults to 'val'. """ if self.draw is False or mode == 'train': return if self.every_n_inner_iters(batch_idx, self.interval): for output in outputs: img_path = output.img_path img_bytes = fileio.get( img_path, backend_args=self.backend_args) img = mmcv.imfrombytes(img_bytes, channel_order='rgb') window_name = f'{mode}_{osp.basename(img_path)}' self._visualizer.add_datasample( window_name, img, data_sample=output, show=self.show, wait_time=self.wait_time, step=runner.iter)