# Copyright (c) OpenMMLab. All rights reserved. """MMPretrain provides 21 registry nodes to support using modules across projects. Each node is a child of the root registry in MMEngine. More details can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from mmengine.registry import DATA_SAMPLERS as MMENGINE_DATA_SAMPLERS from mmengine.registry import DATASETS as MMENGINE_DATASETS from mmengine.registry import EVALUATOR as MMENGINE_EVALUATOR from mmengine.registry import HOOKS as MMENGINE_HOOKS from mmengine.registry import LOG_PROCESSORS as MMENGINE_LOG_PROCESSORS from mmengine.registry import LOOPS as MMENGINE_LOOPS from mmengine.registry import METRICS as MMENGINE_METRICS from mmengine.registry import MODEL_WRAPPERS as MMENGINE_MODEL_WRAPPERS from mmengine.registry import MODELS as MMENGINE_MODELS from mmengine.registry import \ OPTIM_WRAPPER_CONSTRUCTORS as MMENGINE_OPTIM_WRAPPER_CONSTRUCTORS from mmengine.registry import OPTIM_WRAPPERS as MMENGINE_OPTIM_WRAPPERS from mmengine.registry import OPTIMIZERS as MMENGINE_OPTIMIZERS from mmengine.registry import PARAM_SCHEDULERS as MMENGINE_PARAM_SCHEDULERS from mmengine.registry import \ RUNNER_CONSTRUCTORS as MMENGINE_RUNNER_CONSTRUCTORS from mmengine.registry import RUNNERS as MMENGINE_RUNNERS from mmengine.registry import TASK_UTILS as MMENGINE_TASK_UTILS from mmengine.registry import TRANSFORMS as MMENGINE_TRANSFORMS from mmengine.registry import VISBACKENDS as MMENGINE_VISBACKENDS from mmengine.registry import VISUALIZERS as MMENGINE_VISUALIZERS from mmengine.registry import \ WEIGHT_INITIALIZERS as MMENGINE_WEIGHT_INITIALIZERS from mmengine.registry import Registry __all__ = [ 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'LOOPS', 'HOOKS', 'LOG_PROCESSORS', 'OPTIMIZERS', 'OPTIM_WRAPPERS', 'OPTIM_WRAPPER_CONSTRUCTORS', 'PARAM_SCHEDULERS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'MODEL_WRAPPERS', 'WEIGHT_INITIALIZERS', 'BATCH_AUGMENTS', 'TASK_UTILS', 'METRICS', 'EVALUATORS', 'VISUALIZERS', 'VISBACKENDS' ] ####################################################################### # mmpretrain.engine # ####################################################################### # Runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry( 'runner', parent=MMENGINE_RUNNERS, locations=['mmpretrain.engine'], ) # Runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry( 'runner constructor', parent=MMENGINE_RUNNER_CONSTRUCTORS, locations=['mmpretrain.engine'], ) # Loops which define the training or test process, like `EpochBasedTrainLoop` LOOPS = Registry( 'loop', parent=MMENGINE_LOOPS, locations=['mmpretrain.engine'], ) # Hooks to add additional functions during running, like `CheckpointHook` HOOKS = Registry( 'hook', parent=MMENGINE_HOOKS, locations=['mmpretrain.engine'], ) # Log processors to process the scalar log data. LOG_PROCESSORS = Registry( 'log processor', parent=MMENGINE_LOG_PROCESSORS, locations=['mmpretrain.engine'], ) # Optimizers to optimize the model weights, like `SGD` and `Adam`. OPTIMIZERS = Registry( 'optimizer', parent=MMENGINE_OPTIMIZERS, locations=['mmpretrain.engine'], ) # Optimizer wrappers to enhance the optimization process. OPTIM_WRAPPERS = Registry( 'optimizer_wrapper', parent=MMENGINE_OPTIM_WRAPPERS, locations=['mmpretrain.engine'], ) # Optimizer constructors to customize the hyperparameters of optimizers. OPTIM_WRAPPER_CONSTRUCTORS = Registry( 'optimizer wrapper constructor', parent=MMENGINE_OPTIM_WRAPPER_CONSTRUCTORS, locations=['mmpretrain.engine'], ) # Parameter schedulers to dynamically adjust optimization parameters. PARAM_SCHEDULERS = Registry( 'parameter scheduler', parent=MMENGINE_PARAM_SCHEDULERS, locations=['mmpretrain.engine'], ) ####################################################################### # mmpretrain.datasets # ####################################################################### # Datasets like `ImageNet` and `CIFAR10`. DATASETS = Registry( 'dataset', parent=MMENGINE_DATASETS, locations=['mmpretrain.datasets'], ) # Samplers to sample the dataset. DATA_SAMPLERS = Registry( 'data sampler', parent=MMENGINE_DATA_SAMPLERS, locations=['mmpretrain.datasets'], ) # Transforms to process the samples from the dataset. TRANSFORMS = Registry( 'transform', parent=MMENGINE_TRANSFORMS, locations=['mmpretrain.datasets'], ) ####################################################################### # mmpretrain.models # ####################################################################### # Neural network modules inheriting `nn.Module`. MODELS = Registry( 'model', parent=MMENGINE_MODELS, locations=['mmpretrain.models'], ) # Model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry( 'model_wrapper', parent=MMENGINE_MODEL_WRAPPERS, locations=['mmpretrain.models'], ) # Weight initialization methods like uniform, xavier. WEIGHT_INITIALIZERS = Registry( 'weight initializer', parent=MMENGINE_WEIGHT_INITIALIZERS, locations=['mmpretrain.models'], ) # Batch augmentations like `Mixup` and `CutMix`. BATCH_AUGMENTS = Registry( 'batch augment', locations=['mmpretrain.models'], ) # Task-specific modules like anchor generators and box coders TASK_UTILS = Registry( 'task util', parent=MMENGINE_TASK_UTILS, locations=['mmpretrain.models'], ) # Tokenizer to encode sequence TOKENIZER = Registry( 'tokenizer', locations=['mmpretrain.models'], ) ####################################################################### # mmpretrain.evaluation # ####################################################################### # Metrics to evaluate the model prediction results. METRICS = Registry( 'metric', parent=MMENGINE_METRICS, locations=['mmpretrain.evaluation'], ) # Evaluators to define the evaluation process. EVALUATORS = Registry( 'evaluator', parent=MMENGINE_EVALUATOR, locations=['mmpretrain.evaluation'], ) ####################################################################### # mmpretrain.visualization # ####################################################################### # Visualizers to display task-specific results. VISUALIZERS = Registry( 'visualizer', parent=MMENGINE_VISUALIZERS, locations=['mmpretrain.visualization'], ) # Backends to save the visualization results, like TensorBoard, WandB. VISBACKENDS = Registry( 'vis_backend', parent=MMENGINE_VISBACKENDS, locations=['mmpretrain.visualization'], )