# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmpretrain.registry import MODELS from .utils import convert_to_one_hot, weight_reduce_loss def asymmetric_loss(pred, target, weight=None, gamma_pos=1.0, gamma_neg=4.0, clip=0.05, reduction='mean', avg_factor=None, use_sigmoid=True, eps=1e-8): r"""asymmetric loss. Please refer to the `paper `__ for details. Args: pred (torch.Tensor): The prediction with shape (N, \*). target (torch.Tensor): The ground truth label of the prediction with shape (N, \*). weight (torch.Tensor, optional): Sample-wise loss weight with shape (N, ). Defaults to None. gamma_pos (float): positive focusing parameter. Defaults to 0.0. gamma_neg (float): Negative focusing parameter. We usually set gamma_neg > gamma_pos. Defaults to 4.0. clip (float, optional): Probability margin. Defaults to 0.05. reduction (str): The method used to reduce the loss. Options are "none", "mean" and "sum". If reduction is 'none' , loss is same shape as pred and label. Defaults to 'mean'. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. use_sigmoid (bool): Whether the prediction uses sigmoid instead of softmax. Defaults to True. eps (float): The minimum value of the argument of logarithm. Defaults to 1e-8. Returns: torch.Tensor: Loss. """ assert pred.shape == \ target.shape, 'pred and target should be in the same shape.' if use_sigmoid: pred_sigmoid = pred.sigmoid() else: pred_sigmoid = nn.functional.softmax(pred, dim=-1) target = target.type_as(pred) if clip and clip > 0: pt = (1 - pred_sigmoid + clip).clamp(max=1) * (1 - target) + pred_sigmoid * target else: pt = (1 - pred_sigmoid) * (1 - target) + pred_sigmoid * target asymmetric_weight = (1 - pt).pow(gamma_pos * target + gamma_neg * (1 - target)) loss = -torch.log(pt.clamp(min=eps)) * asymmetric_weight if weight is not None: assert weight.dim() == 1 weight = weight.float() if pred.dim() > 1: weight = weight.reshape(-1, 1) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss @MODELS.register_module() class AsymmetricLoss(nn.Module): """asymmetric loss. Args: gamma_pos (float): positive focusing parameter. Defaults to 0.0. gamma_neg (float): Negative focusing parameter. We usually set gamma_neg > gamma_pos. Defaults to 4.0. clip (float, optional): Probability margin. Defaults to 0.05. reduction (str): The method used to reduce the loss into a scalar. loss_weight (float): Weight of loss. Defaults to 1.0. use_sigmoid (bool): Whether the prediction uses sigmoid instead of softmax. Defaults to True. eps (float): The minimum value of the argument of logarithm. Defaults to 1e-8. """ def __init__(self, gamma_pos=0.0, gamma_neg=4.0, clip=0.05, reduction='mean', loss_weight=1.0, use_sigmoid=True, eps=1e-8): super(AsymmetricLoss, self).__init__() self.gamma_pos = gamma_pos self.gamma_neg = gamma_neg self.clip = clip self.reduction = reduction self.loss_weight = loss_weight self.use_sigmoid = use_sigmoid self.eps = eps def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): r"""asymmetric loss. Args: pred (torch.Tensor): The prediction with shape (N, \*). target (torch.Tensor): The ground truth label of the prediction with shape (N, \*), N or (N,1). weight (torch.Tensor, optional): Sample-wise loss weight with shape (N, \*). Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The method used to reduce the loss into a scalar. Options are "none", "mean" and "sum". Defaults to None. Returns: torch.Tensor: Loss. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if target.dim() == 1 or (target.dim() == 2 and target.shape[1] == 1): target = convert_to_one_hot(target.view(-1, 1), pred.shape[-1]) loss_cls = self.loss_weight * asymmetric_loss( pred, target, weight, gamma_pos=self.gamma_pos, gamma_neg=self.gamma_neg, clip=self.clip, reduction=reduction, avg_factor=avg_factor, use_sigmoid=self.use_sigmoid, eps=self.eps) return loss_cls