# Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, Optional, Sequence, Tuple import torch import torch.nn as nn from mmcv.cnn import build_activation_layer, build_norm_layer from mmengine.model import BaseModule, ModuleList from mmpretrain.registry import MODELS from .cls_head import ClsHead class LinearBlock(BaseModule): """Linear block for StackedLinearClsHead.""" def __init__(self, in_channels, out_channels, dropout_rate=0., norm_cfg=None, act_cfg=None, init_cfg=None): super().__init__(init_cfg=init_cfg) self.fc = nn.Linear(in_channels, out_channels) self.norm = None self.act = None self.dropout = None if norm_cfg is not None: self.norm = build_norm_layer(norm_cfg, out_channels)[1] if act_cfg is not None: self.act = build_activation_layer(act_cfg) if dropout_rate > 0: self.dropout = nn.Dropout(p=dropout_rate) def forward(self, x): """The forward process.""" x = self.fc(x) if self.norm is not None: x = self.norm(x) if self.act is not None: x = self.act(x) if self.dropout is not None: x = self.dropout(x) return x @MODELS.register_module() class StackedLinearClsHead(ClsHead): """Classifier head with several hidden fc layer and a output fc layer. Args: num_classes (int): Number of categories. in_channels (int): Number of channels in the input feature map. mid_channels (Sequence[int]): Number of channels in the hidden fc layers. dropout_rate (float): Dropout rate after each hidden fc layer, except the last layer. Defaults to 0. norm_cfg (dict, optional): Config dict of normalization layer after each hidden fc layer, except the last layer. Defaults to None. act_cfg (dict, optional): Config dict of activation function after each hidden layer, except the last layer. Defaults to use "ReLU". """ def __init__(self, num_classes: int, in_channels: int, mid_channels: Sequence[int], dropout_rate: float = 0., norm_cfg: Optional[Dict] = None, act_cfg: Optional[Dict] = dict(type='ReLU'), **kwargs): super(StackedLinearClsHead, self).__init__(**kwargs) self.num_classes = num_classes self.in_channels = in_channels if self.num_classes <= 0: raise ValueError( f'num_classes={num_classes} must be a positive integer') assert isinstance(mid_channels, Sequence), \ f'`mid_channels` of StackedLinearClsHead should be a sequence, ' \ f'instead of {type(mid_channels)}' self.mid_channels = mid_channels self.dropout_rate = dropout_rate self.norm_cfg = norm_cfg self.act_cfg = act_cfg self._init_layers() def _init_layers(self): """"Init layers.""" self.layers = ModuleList() in_channels = self.in_channels for hidden_channels in self.mid_channels: self.layers.append( LinearBlock( in_channels, hidden_channels, dropout_rate=self.dropout_rate, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg)) in_channels = hidden_channels self.layers.append( LinearBlock( self.mid_channels[-1], self.num_classes, dropout_rate=0., norm_cfg=None, act_cfg=None)) def pre_logits(self, feats: Tuple[torch.Tensor]) -> torch.Tensor: """The process before the final classification head. The input ``feats`` is a tuple of tensor, and each tensor is the feature of a backbone stage. """ x = feats[-1] for layer in self.layers[:-1]: x = layer(x) return x @property def fc(self): """Full connected layer.""" return self.layers[-1] def forward(self, feats: Tuple[torch.Tensor]) -> torch.Tensor: """The forward process.""" pre_logits = self.pre_logits(feats) # The final classification head. cls_score = self.fc(pre_logits) return cls_score