# Copyright (c) OpenMMLab. All rights reserved. # Partly adopted from https://github.com/GT-Vision-Lab/VQA # Copyright (c) 2014, Aishwarya Agrawal from typing import List, Optional import mmengine from mmengine.evaluator import BaseMetric from mmengine.logging import MMLogger from mmpretrain.registry import METRICS def _process_punctuation(inText): import re outText = inText punct = [ ';', r'/', '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-', '>', '<', '@', '`', ',', '?', '!' ] commaStrip = re.compile('(\d)(,)(\d)') # noqa: W605 periodStrip = re.compile('(?!<=\d)(\.)(?!\d)') # noqa: W605 for p in punct: if (p + ' ' in inText or ' ' + p in inText) or (re.search( commaStrip, inText) is not None): outText = outText.replace(p, '') else: outText = outText.replace(p, ' ') outText = periodStrip.sub('', outText, re.UNICODE) return outText def _process_digit_article(inText): outText = [] tempText = inText.lower().split() articles = ['a', 'an', 'the'] manualMap = { 'none': '0', 'zero': '0', 'one': '1', 'two': '2', 'three': '3', 'four': '4', 'five': '5', 'six': '6', 'seven': '7', 'eight': '8', 'nine': '9', 'ten': '10', } contractions = { 'aint': "ain't", 'arent': "aren't", 'cant': "can't", 'couldve': "could've", 'couldnt': "couldn't", "couldn'tve": "couldn't've", "couldnt've": "couldn't've", 'didnt': "didn't", 'doesnt': "doesn't", 'dont': "don't", 'hadnt': "hadn't", "hadnt've": "hadn't've", "hadn'tve": "hadn't've", 'hasnt': "hasn't", 'havent': "haven't", 'hed': "he'd", "hed've": "he'd've", "he'dve": "he'd've", 'hes': "he's", 'howd': "how'd", 'howll': "how'll", 'hows': "how's", "Id've": "I'd've", "I'dve": "I'd've", 'Im': "I'm", 'Ive': "I've", 'isnt': "isn't", 'itd': "it'd", "itd've": "it'd've", "it'dve": "it'd've", 'itll': "it'll", "let's": "let's", 'maam': "ma'am", 'mightnt': "mightn't", "mightnt've": "mightn't've", "mightn'tve": "mightn't've", 'mightve': "might've", 'mustnt': "mustn't", 'mustve': "must've", 'neednt': "needn't", 'notve': "not've", 'oclock': "o'clock", 'oughtnt': "oughtn't", "ow's'at": "'ow's'at", "'ows'at": "'ow's'at", "'ow'sat": "'ow's'at", 'shant': "shan't", "shed've": "she'd've", "she'dve": "she'd've", "she's": "she's", 'shouldve': "should've", 'shouldnt': "shouldn't", "shouldnt've": "shouldn't've", "shouldn'tve": "shouldn't've", "somebody'd": 'somebodyd', "somebodyd've": "somebody'd've", "somebody'dve": "somebody'd've", 'somebodyll': "somebody'll", 'somebodys': "somebody's", 'someoned': "someone'd", "someoned've": "someone'd've", "someone'dve": "someone'd've", 'someonell': "someone'll", 'someones': "someone's", 'somethingd': "something'd", "somethingd've": "something'd've", "something'dve": "something'd've", 'somethingll': "something'll", 'thats': "that's", 'thered': "there'd", "thered've": "there'd've", "there'dve": "there'd've", 'therere': "there're", 'theres': "there's", 'theyd': "they'd", "theyd've": "they'd've", "they'dve": "they'd've", 'theyll': "they'll", 'theyre': "they're", 'theyve': "they've", 'twas': "'twas", 'wasnt': "wasn't", "wed've": "we'd've", "we'dve": "we'd've", 'weve': "we've", 'werent': "weren't", 'whatll': "what'll", 'whatre': "what're", 'whats': "what's", 'whatve': "what've", 'whens': "when's", 'whered': "where'd", 'wheres': "where's", 'whereve': "where've", 'whod': "who'd", "whod've": "who'd've", "who'dve": "who'd've", 'wholl': "who'll", 'whos': "who's", 'whove': "who've", 'whyll': "why'll", 'whyre': "why're", 'whys': "why's", 'wont': "won't", 'wouldve': "would've", 'wouldnt': "wouldn't", "wouldnt've": "wouldn't've", "wouldn'tve": "wouldn't've", 'yall': "y'all", "yall'll": "y'all'll", "y'allll": "y'all'll", "yall'd've": "y'all'd've", "y'alld've": "y'all'd've", "y'all'dve": "y'all'd've", 'youd': "you'd", "youd've": "you'd've", "you'dve": "you'd've", 'youll': "you'll", 'youre': "you're", 'youve': "you've", } for word in tempText: word = manualMap.setdefault(word, word) if word not in articles: outText.append(word) for wordId, word in enumerate(outText): if word in contractions: outText[wordId] = contractions[word] outText = ' '.join(outText) return outText @METRICS.register_module() class VQAAcc(BaseMetric): '''VQA Acc metric. Args: collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Should be modified according to the `retrieval_type` for unambiguous results. Defaults to TR. ''' default_prefix = 'VQA' def __init__(self, full_score_weight: float = 0.3, collect_device: str = 'cpu', prefix: Optional[str] = None): super().__init__(collect_device=collect_device, prefix=prefix) self.full_score_weight = full_score_weight def process(self, data_batch, data_samples): """Process one batch of data samples. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch: A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ for sample in data_samples: gt_answer = sample.get('gt_answer') gt_answer_weight = sample.get('gt_answer_weight') if isinstance(gt_answer, str): gt_answer = [gt_answer] if gt_answer_weight is None: gt_answer_weight = [1. / (len(gt_answer))] * len(gt_answer) result = { 'pred_answer': sample.get('pred_answer'), 'gt_answer': gt_answer, 'gt_answer_weight': gt_answer_weight, } self.results.append(result) def compute_metrics(self, results: List): """Compute the metrics from processed results. Args: results (dict): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ acc = [] for result in results: pred_answer = self._process_answer(result['pred_answer']) gt_answer = [ self._process_answer(answer) for answer in result['gt_answer'] ] answer_weight = result['gt_answer_weight'] weight_sum = 0 for i, gt in enumerate(gt_answer): if gt == pred_answer: weight_sum += answer_weight[i] vqa_acc = min(1.0, weight_sum / self.full_score_weight) acc.append(vqa_acc) accuracy = sum(acc) / len(acc) * 100 metrics = {'acc': accuracy} return metrics def _process_answer(self, answer): answer = answer.replace('\n', ' ') answer = answer.replace('\t', ' ') answer = answer.strip() answer = _process_punctuation(answer) answer = _process_digit_article(answer) return answer @METRICS.register_module() class ReportVQA(BaseMetric): """Dump VQA result to the standard json format for VQA evaluation. Args: file_path (str): The file path to save the result file. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Should be modified according to the `retrieval_type` for unambiguous results. Defaults to TR. """ default_prefix = 'VQA' def __init__(self, file_path: str, collect_device: str = 'cpu', prefix: Optional[str] = None): super().__init__(collect_device=collect_device, prefix=prefix) if not file_path.endswith('.json'): raise ValueError('The output file must be a json file.') self.file_path = file_path def process(self, data_batch, data_samples) -> None: """transfer tensors in predictions to CPU.""" for sample in data_samples: question_id = sample['question_id'] pred_answer = sample['pred_answer'] result = { 'question_id': int(question_id), 'answer': pred_answer, } self.results.append(result) def compute_metrics(self, results: List): """Dump the result to json file.""" mmengine.dump(results, self.file_path) logger = MMLogger.get_current_instance() logger.info(f'Results has been saved to {self.file_path}.') return {}