# Copyright (c) OpenMMLab. All rights reserved. import json import logging import os.path as osp import warnings from typing import List, Union import mmcv from mmengine.dist import get_rank from mmengine.fileio import dump, get, get_text, load from mmengine.logging import print_log from mmengine.utils import ProgressBar from mmdet.registry import DATASETS from .base_det_dataset import BaseDetDataset @DATASETS.register_module() class CrowdHumanDataset(BaseDetDataset): r"""Dataset for CrowdHuman. Args: data_root (str): The root directory for ``data_prefix`` and ``ann_file``. ann_file (str): Annotation file path. extra_ann_file (str | optional):The path of extra image metas for CrowdHuman. It can be created by CrowdHumanDataset automatically or by tools/misc/get_crowdhuman_id_hw.py manually. Defaults to None. """ METAINFO = { 'classes': ('person', ), # palette is a list of color tuples, which is used for visualization. 'palette': [(220, 20, 60)] } def __init__(self, data_root, ann_file, extra_ann_file=None, **kwargs): # extra_ann_file record the size of each image. This file is # automatically created when you first load the CrowdHuman # dataset by mmdet. if extra_ann_file is not None: self.extra_ann_exist = True self.extra_anns = load(extra_ann_file) else: ann_file_name = osp.basename(ann_file) if 'train' in ann_file_name: self.extra_ann_file = osp.join(data_root, 'id_hw_train.json') elif 'val' in ann_file_name: self.extra_ann_file = osp.join(data_root, 'id_hw_val.json') self.extra_ann_exist = False if not osp.isfile(self.extra_ann_file): print_log( 'extra_ann_file does not exist, prepare to collect ' 'image height and width...', level=logging.INFO) self.extra_anns = {} else: self.extra_ann_exist = True self.extra_anns = load(self.extra_ann_file) super().__init__(data_root=data_root, ann_file=ann_file, **kwargs) def load_data_list(self) -> List[dict]: """Load annotations from an annotation file named as ``self.ann_file`` Returns: List[dict]: A list of annotation. """ # noqa: E501 anno_strs = get_text( self.ann_file, backend_args=self.backend_args).strip().split('\n') print_log('loading CrowdHuman annotation...', level=logging.INFO) data_list = [] prog_bar = ProgressBar(len(anno_strs)) for i, anno_str in enumerate(anno_strs): anno_dict = json.loads(anno_str) parsed_data_info = self.parse_data_info(anno_dict) data_list.append(parsed_data_info) prog_bar.update() if not self.extra_ann_exist and get_rank() == 0: # TODO: support file client try: dump(self.extra_anns, self.extra_ann_file, file_format='json') except: # noqa warnings.warn( 'Cache files can not be saved automatically! To speed up' 'loading the dataset, please manually generate the cache' ' file by file tools/misc/get_crowdhuman_id_hw.py') print_log( f'\nsave extra_ann_file in {self.data_root}', level=logging.INFO) del self.extra_anns print_log('\nDone', level=logging.INFO) return data_list def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]: """Parse raw annotation to target format. Args: raw_data_info (dict): Raw data information load from ``ann_file`` Returns: Union[dict, List[dict]]: Parsed annotation. """ data_info = {} img_path = osp.join(self.data_prefix['img'], f"{raw_data_info['ID']}.jpg") data_info['img_path'] = img_path data_info['img_id'] = raw_data_info['ID'] if not self.extra_ann_exist: img_bytes = get(img_path, backend_args=self.backend_args) img = mmcv.imfrombytes(img_bytes, backend='cv2') data_info['height'], data_info['width'] = img.shape[:2] self.extra_anns[raw_data_info['ID']] = img.shape[:2] del img, img_bytes else: data_info['height'], data_info['width'] = self.extra_anns[ raw_data_info['ID']] instances = [] for i, ann in enumerate(raw_data_info['gtboxes']): instance = {} if ann['tag'] not in self.metainfo['classes']: instance['bbox_label'] = -1 instance['ignore_flag'] = 1 else: instance['bbox_label'] = self.metainfo['classes'].index( ann['tag']) instance['ignore_flag'] = 0 if 'extra' in ann: if 'ignore' in ann['extra']: if ann['extra']['ignore'] != 0: instance['bbox_label'] = -1 instance['ignore_flag'] = 1 x1, y1, w, h = ann['fbox'] bbox = [x1, y1, x1 + w, y1 + h] instance['bbox'] = bbox # Record the full bbox(fbox), head bbox(hbox) and visible # bbox(vbox) as additional information. If you need to use # this information, you just need to design the pipeline # instead of overriding the CrowdHumanDataset. instance['fbox'] = bbox hbox = ann['hbox'] instance['hbox'] = [ hbox[0], hbox[1], hbox[0] + hbox[2], hbox[1] + hbox[3] ] vbox = ann['vbox'] instance['vbox'] = [ vbox[0], vbox[1], vbox[0] + vbox[2], vbox[1] + vbox[3] ] instances.append(instance) data_info['instances'] = instances return data_info