# Copyright (c) OpenMMLab. All rights reserved.
import codecs
from typing import List, Optional
from urllib.parse import urljoin
import mmengine.dist as dist
import numpy as np
import torch
from mmengine.fileio import LocalBackend, exists, get_file_backend, join_path
from mmpretrain.registry import DATASETS
from .base_dataset import BaseDataset
from .categories import FASHIONMNIST_CATEGORITES, MNIST_CATEGORITES
from .utils import (download_and_extract_archive, open_maybe_compressed_file,
rm_suffix)
@DATASETS.register_module()
class MNIST(BaseDataset):
"""`MNIST `_ Dataset.
This implementation is modified from
https://github.com/pytorch/vision/blob/master/torchvision/datasets/mnist.py
Args:
data_prefix (str): Prefix for data.
test_mode (bool): ``test_mode=True`` means in test phase.
It determines to use the training set or test set.
metainfo (dict, optional): Meta information for dataset, such as
categories information. Defaults to None.
data_root (str): The root directory for ``data_prefix``.
Defaults to ''.
download (bool): Whether to download the dataset if not exists.
Defaults to True.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
""" # noqa: E501
url_prefix = 'http://yann.lecun.com/exdb/mnist/'
# train images and labels
train_list = [
['train-images-idx3-ubyte.gz', 'f68b3c2dcbeaaa9fbdd348bbdeb94873'],
['train-labels-idx1-ubyte.gz', 'd53e105ee54ea40749a09fcbcd1e9432'],
]
# test images and labels
test_list = [
['t10k-images-idx3-ubyte.gz', '9fb629c4189551a2d022fa330f9573f3'],
['t10k-labels-idx1-ubyte.gz', 'ec29112dd5afa0611ce80d1b7f02629c'],
]
METAINFO = {'classes': MNIST_CATEGORITES}
def __init__(self,
data_prefix: str,
test_mode: bool,
metainfo: Optional[dict] = None,
data_root: str = '',
download: bool = True,
**kwargs):
self.download = download
super().__init__(
# The MNIST dataset doesn't need specify annotation file
ann_file='',
metainfo=metainfo,
data_root=data_root,
data_prefix=dict(root=data_prefix),
test_mode=test_mode,
**kwargs)
def load_data_list(self):
"""Load images and ground truth labels."""
root = self.data_prefix['root']
backend = get_file_backend(root, enable_singleton=True)
if dist.is_main_process() and not self._check_exists():
if not isinstance(backend, LocalBackend):
raise RuntimeError(f'The dataset on {root} is not integrated, '
f'please manually handle it.')
if self.download:
self._download()
else:
raise RuntimeError(
f'Cannot find {self.__class__.__name__} dataset in '
f"{self.data_prefix['root']}, you can specify "
'`download=True` to download automatically.')
dist.barrier()
assert self._check_exists(), \
'Download failed or shared storage is unavailable. Please ' \
f'download the dataset manually through {self.url_prefix}.'
if not self.test_mode:
file_list = self.train_list
else:
file_list = self.test_list
# load data from SN3 files
imgs = read_image_file(join_path(root, rm_suffix(file_list[0][0])))
gt_labels = read_label_file(
join_path(root, rm_suffix(file_list[1][0])))
data_infos = []
for img, gt_label in zip(imgs, gt_labels):
gt_label = np.array(gt_label, dtype=np.int64)
info = {'img': img.numpy(), 'gt_label': gt_label}
data_infos.append(info)
return data_infos
def _check_exists(self):
"""Check the exists of data files."""
root = self.data_prefix['root']
for filename, _ in (self.train_list + self.test_list):
# get extracted filename of data
extract_filename = rm_suffix(filename)
fpath = join_path(root, extract_filename)
if not exists(fpath):
return False
return True
def _download(self):
"""Download and extract data files."""
root = self.data_prefix['root']
for filename, md5 in (self.train_list + self.test_list):
url = urljoin(self.url_prefix, filename)
download_and_extract_archive(
url, download_root=root, filename=filename, md5=md5)
def extra_repr(self) -> List[str]:
"""The extra repr information of the dataset."""
body = [f"Prefix of data: \t{self.data_prefix['root']}"]
return body
@DATASETS.register_module()
class FashionMNIST(MNIST):
"""`Fashion-MNIST `_
Dataset.
Args:
data_prefix (str): Prefix for data.
test_mode (bool): ``test_mode=True`` means in test phase.
It determines to use the training set or test set.
metainfo (dict, optional): Meta information for dataset, such as
categories information. Defaults to None.
data_root (str): The root directory for ``data_prefix``.
Defaults to ''.
download (bool): Whether to download the dataset if not exists.
Defaults to True.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
url_prefix = 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/'
# train images and labels
train_list = [
['train-images-idx3-ubyte.gz', '8d4fb7e6c68d591d4c3dfef9ec88bf0d'],
['train-labels-idx1-ubyte.gz', '25c81989df183df01b3e8a0aad5dffbe'],
]
# test images and labels
test_list = [
['t10k-images-idx3-ubyte.gz', 'bef4ecab320f06d8554ea6380940ec79'],
['t10k-labels-idx1-ubyte.gz', 'bb300cfdad3c16e7a12a480ee83cd310'],
]
METAINFO = {'classes': FASHIONMNIST_CATEGORITES}
def get_int(b: bytes) -> int:
"""Convert bytes to int."""
return int(codecs.encode(b, 'hex'), 16)
def read_sn3_pascalvincent_tensor(path: str,
strict: bool = True) -> torch.Tensor:
"""Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-
io.lsh').
Argument may be a filename, compressed filename, or file object.
"""
# typemap
if not hasattr(read_sn3_pascalvincent_tensor, 'typemap'):
read_sn3_pascalvincent_tensor.typemap = {
8: (torch.uint8, np.uint8, np.uint8),
9: (torch.int8, np.int8, np.int8),
11: (torch.int16, np.dtype('>i2'), 'i2'),
12: (torch.int32, np.dtype('>i4'), 'i4'),
13: (torch.float32, np.dtype('>f4'), 'f4'),
14: (torch.float64, np.dtype('>f8'), 'f8')
}
# read
with open_maybe_compressed_file(path) as f:
data = f.read()
# parse
magic = get_int(data[0:4])
nd = magic % 256
ty = magic // 256
assert nd >= 1 and nd <= 3
assert ty >= 8 and ty <= 14
m = read_sn3_pascalvincent_tensor.typemap[ty]
s = [get_int(data[4 * (i + 1):4 * (i + 2)]) for i in range(nd)]
parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
assert parsed.shape[0] == np.prod(s) or not strict
return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)
def read_label_file(path: str) -> torch.Tensor:
"""Read labels from SN3 label file."""
with open(path, 'rb') as f:
x = read_sn3_pascalvincent_tensor(f, strict=False)
assert (x.dtype == torch.uint8)
assert (x.ndimension() == 1)
return x.long()
def read_image_file(path: str) -> torch.Tensor:
"""Read images from SN3 image file."""
with open(path, 'rb') as f:
x = read_sn3_pascalvincent_tensor(f, strict=False)
assert (x.dtype == torch.uint8)
assert (x.ndimension() == 3)
return x