# Copyright (c) OpenMMLab. All rights reserved. from pathlib import Path from typing import Callable, List, Optional, Union import numpy as np from mmcv.image import imread from mmengine.config import Config from mmengine.dataset import Compose, default_collate from mmpretrain.registry import TRANSFORMS from mmpretrain.structures import DataSample from .base import BaseInferencer from .model import list_models class VisualGroundingInferencer(BaseInferencer): """The inferencer for visual grounding. Args: model (BaseModel | str | Config): A model name or a path to the config file, or a :obj:`BaseModel` object. The model name can be found by ``VisualGroundingInferencer.list_models()`` and you can also query it in :doc:`/modelzoo_statistics`. pretrained (str, optional): Path to the checkpoint. If None, it will try to find a pre-defined weight from the model you specified (only work if the ``model`` is a model name). Defaults to None. device (str, optional): Device to run inference. If None, the available device will be automatically used. Defaults to None. **kwargs: Other keyword arguments to initialize the model (only work if the ``model`` is a model name). Example: >>> from mmpretrain import VisualGroundingInferencer >>> inferencer = VisualGroundingInferencer('ofa-base_3rdparty_refcoco') >>> inferencer('demo/cat-dog.png', 'dog')[0] {'pred_bboxes': tensor([[ 36.6000, 29.6000, 355.8000, 395.2000]])} """ # noqa: E501 visualize_kwargs: set = { 'resize', 'show', 'show_dir', 'wait_time', 'line_width', 'bbox_color' } def __call__(self, images: Union[str, np.ndarray, list], texts: Union[str, list], return_datasamples: bool = False, batch_size: int = 1, **kwargs) -> dict: """Call the inferencer. Args: images (str | array | list): The image path or array, or a list of images. texts (str | list): The text to do visual grounding. return_datasamples (bool): Whether to return results as :obj:`DataSample`. Defaults to False. batch_size (int): Batch size. Defaults to 1. resize (int, optional): Resize the short edge of the image to the specified length before visualization. Defaults to None. draw_score (bool): Whether to draw the prediction scores of prediction categories. Defaults to True. show (bool): Whether to display the visualization result in a window. Defaults to False. wait_time (float): The display time (s). Defaults to 0, which means "forever". show_dir (str, optional): If not None, save the visualization results in the specified directory. Defaults to None. line_width (int): The line width of the bbox. Defaults to 3. bbox_color (str | tuple): The color of the bbox. Defaults to 'green'. Returns: list: The inference results. """ if not isinstance(images, (list, tuple)): assert isinstance(texts, str) inputs = [{'img': images, 'text': texts}] else: inputs = [] for i in range(len(images)): input_ = {'img': images[i], 'text': texts[i]} inputs.append(input_) return super().__call__(inputs, return_datasamples, batch_size, **kwargs) def _init_pipeline(self, cfg: Config) -> Callable: test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline if test_pipeline_cfg[0]['type'] == 'LoadImageFromFile': # Image loading is finished in `self.preprocess`. test_pipeline_cfg = test_pipeline_cfg[1:] test_pipeline = Compose( [TRANSFORMS.build(t) for t in test_pipeline_cfg]) return test_pipeline def preprocess(self, inputs: List[dict], batch_size: int = 1): def load_image(input_: dict): img = imread(input_['img']) if img is None: raise ValueError(f'Failed to read image {input_}.') return {**input_, 'img': img} pipeline = Compose([load_image, self.pipeline]) chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size) yield from map(default_collate, chunked_data) def visualize(self, ori_inputs: List[dict], preds: List[DataSample], show: bool = False, wait_time: int = 0, resize: Optional[int] = None, line_width: int = 3, bbox_color: Union[str, tuple] = 'green', show_dir=None): if not show and show_dir is None: return None if self.visualizer is None: from mmpretrain.visualization import UniversalVisualizer self.visualizer = UniversalVisualizer() visualization = [] for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)): image = imread(input_['img']) if isinstance(input_['img'], str): # The image loaded from path is BGR format. image = image[..., ::-1] name = Path(input_['img']).stem else: name = str(i) if show_dir is not None: show_dir = Path(show_dir) show_dir.mkdir(exist_ok=True) out_file = str((show_dir / name).with_suffix('.png')) else: out_file = None self.visualizer.visualize_visual_grounding( image, data_sample, resize=resize, show=show, wait_time=wait_time, line_width=line_width, bbox_color=bbox_color, name=name, out_file=out_file) visualization.append(self.visualizer.get_image()) if show: self.visualizer.close() return visualization def postprocess(self, preds: List[DataSample], visualization: List[np.ndarray], return_datasamples=False) -> dict: if return_datasamples: return preds results = [] for data_sample in preds: results.append({'pred_bboxes': data_sample.get('pred_bboxes')}) return results @staticmethod def list_models(pattern: Optional[str] = None): """List all available model names. Args: pattern (str | None): A wildcard pattern to match model names. Returns: List[str]: a list of model names. """ return list_models(pattern=pattern, task='Visual Grounding')