KyanChen's picture
Upload 303 files
4d0eb62
raw
history blame
10.7 kB
# Copyright (c) OpenMMLab. All rights reserved.
import random
from abc import abstractmethod
from collections import Counter
from typing import List
import mmengine
import numpy as np
from mmengine.dataset import BaseDataset
from pycocotools.coco import COCO
from mmpretrain.registry import DATASETS
from .coco_vqa import COCOVQA
class FlamingoFewShotMixin:
"""Flamingo fewshot eval dataset minin.
Args:
num_shots (int): Number of shots to perform evaluation.
Defaults to 0.
Note: 0 does not mean a strict zero-shot in Flamingo setting.
It will use 2 only-text prompt without in context images.
num_support_examples (int): Number of support examples to get the
few shots from. Defaults to 2048.
num_query_examples (int): Number of query examples to perform the
final evaluation. Defaults to 5000.
incontext_prompt_temp (str): In context prompt template for few shot
examples. Defaults to ''.
final_prompt_temp (str): Final query prompt template. Defaults to ''.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
num_shots: int = 0,
num_support_examples: int = 2048,
num_query_examples: int = 5000,
incontext_prompt_temp: str = '',
final_prompt_temp: str = '',
**kwarg):
self.num_shots = num_shots
self.num_support_examples = num_support_examples
self.num_query_examples = num_query_examples
self.incontext_prompt_temp = incontext_prompt_temp
self.final_prompt_temp = final_prompt_temp
super().__init__(**kwarg)
def get_subset_idx(self, total_num):
random_idx = np.random.choice(
total_num,
self.num_support_examples + self.num_query_examples,
replace=False)
support_idx = random_idx[:self.num_support_examples]
query_idx = random_idx[self.num_support_examples:]
return support_idx, query_idx
@abstractmethod
def parse_basic_anno(self, anno: dict) -> dict:
"""Parse basic annotation for support and query set."""
pass
@abstractmethod
def parse_fewshot_anno(self, anno: dict, support_list: List) -> dict:
"""Parse fewshot related annotation for query set with support list."""
pass
@DATASETS.register_module()
class FlamingoEvalCOCOVQA(FlamingoFewShotMixin, COCOVQA):
"""Flamingo few shot VQAv2 dataset.
Args:
data_root (str): The root directory for ``data_prefix`` and
``ann_file``.
ann_file (str): Annotation file path.
question_file (str): Question file path.
num_shots (int): Number of shots to perform evaluation.
Defaults to 0.
Note: 0 does not mean a strict zero-shot in Flamingo setting.
It will use 2 only-text prompt without in context images.
num_support_examples (int): Number of support examples to get the
few shots from. Defaults to 2048.
num_query_examples (int): Number of query examples to perform the
final evaluation. Defaults to 5000.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root: str,
question_file: str,
ann_file: str = '',
num_shots: int = 0,
num_support_examples: int = 2048,
num_query_examples: int = 5000,
**kwarg):
super().__init__(
data_root=data_root,
question_file=question_file,
ann_file=ann_file,
num_shots=num_shots,
num_support_examples=num_support_examples,
num_query_examples=num_query_examples,
**kwarg)
def parse_basic_anno(self, ann: dict) -> dict:
"""Parse basic annotation for support and query set.
Args:
anno (dict): Annotation for single example.
Return:
dict: Parsed annotation for single example.
"""
if ann is None:
return {}
answers = [a['answer'] for a in ann['answers']]
count = Counter(answers)
answer_weight = [i / len(answers) for i in count.values()]
answer_info = {
'gt_answer': list(count.keys()),
'gt_answer_weight': answer_weight
}
return answer_info
def parse_fewshot_anno(self, query: dict, support_list: List) -> dict:
"""Parse fewshot related annotation for query set with support list.
Args:
anno (dict): Annotation for single example.
support_list (List): List of support subset to subsample few shots.
Return:
dict: Parsed annotation for single example.
"""
# prepare n shots examples
shots = random.sample(support_list, self.num_shots)
# append image path for n shots
img_path = [shot['img_path'] for shot in shots]
img_path.append(query['img_path'])
query['img_path'] = img_path
query['shots'] = [
dict(
question=item['question'],
answer=item['gt_answer'][0],
) for item in shots
]
return query
def load_data_list(self) -> List[dict]:
"""Load data list."""
questions = mmengine.load(self.question_file)['questions']
if self.ann_file:
annotations = mmengine.load(self.ann_file)['annotations']
assert len(questions) == len(annotations)
else:
annotations = [None] * len(questions)
if self.num_shots > 0:
raise ValueError('Unable to construct few-shot examples '
'since no annotation file.')
# The original VQAv2 annotation file and question file includes
# only image id but no image file paths.
self.image_index = self._create_image_index()
num_data = len(questions)
support_idx, query_idx = self.get_subset_idx(num_data)
# prepare support subset
if self.num_shots > 0:
support_list = []
for idx in support_idx:
question = questions[idx]
ann = annotations[idx]
support = {**question, **self.parse_basic_anno(ann)}
support['img_path'] = self.image_index[question['image_id']]
support_list.append(support)
# prepare query subset
data_list = []
for idx in query_idx:
question = questions[idx]
ann = annotations[idx]
data_info = {**question, **self.parse_basic_anno(ann)}
data_info['img_path'] = self.image_index[question['image_id']]
if self.num_shots > 0:
data_info = self.parse_fewshot_anno(data_info, support_list)
data_list.append(data_info)
return data_list
@DATASETS.register_module()
class FlamingoEvalCOCOCaption(FlamingoFewShotMixin, BaseDataset):
"""Flamingo few shot COCO Caption dataset.
Args:
data_root (str): The root directory for ``data_prefix`` and
``ann_file``.
ann_file (str): Annotation file path.
data_prefix (dict): Prefix for data field. Defaults to
``dict(img_path='')``.
num_shots (int): Number of shots to perform evaluation.
Defaults to 0.
num_support_examples (int): Number of support examples to get the
few shots from. Defaults to 2048.
num_query_examples (int): Number of query examples to perform the
final evaluation. Defaults to 5000.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root: str,
ann_file: str,
num_shots: int = 0,
num_support_examples: int = 2048,
num_query_examples: int = 5000,
**kwarg):
super().__init__(
data_root=data_root,
ann_file=ann_file,
num_shots=num_shots,
num_support_examples=num_support_examples,
num_query_examples=num_query_examples,
**kwarg)
def parse_basic_anno(self, ann: dict, coco: COCO) -> dict:
"""Parse basic annotation for support and query set.
Args:
anno (dict): Annotation for single example.
coco (COCO): The coco dataset.
Return:
dict: Parsed annotation for single example.
"""
img_prefix = self.data_prefix['img_path']
img = coco.imgs[ann['image_id']]
data_info = dict(
img_path=mmengine.join_path(img_prefix, img['file_name']),
gt_caption=ann['caption'],
image_id=ann['image_id'],
)
return data_info
def parse_fewshot_anno(self, query: dict, support_list: List) -> dict:
"""Parse fewshot related annotation for query set with support list.
Args:
query (dict): Annotation for single example.
support_list (List): List of support subset to subsample few shots.
coco (COCO): The coco dataset.
Return:
dict: Parsed annotation for single example.
"""
# prepare n shots examples
shots = random.sample(support_list, self.num_shots)
# append image path for n shots
img_path = [shot['img_path'] for shot in shots]
img_path.append(query['img_path'])
query['img_path'] = img_path
query['shots'] = [dict(caption=item['gt_caption']) for item in shots]
return query
def load_data_list(self) -> List[dict]:
"""Load data list."""
with mmengine.get_local_path(self.ann_file) as ann_file:
coco = COCO(ann_file)
num_data = len(coco.anns)
support_idx, query_idx = self.get_subset_idx(num_data)
ann_ids = list(coco.anns)
# prepare support subset
if self.num_shots > 0:
support_list = []
for idx in support_idx:
support = self.parse_basic_anno(coco.anns[ann_ids[idx]], coco)
support_list.append(support)
# prepare query subset
query_list = []
for idx in query_idx:
data_info = self.parse_basic_anno(coco.anns[ann_ids[idx]], coco)
if self.num_shots > 0:
data_info = self.parse_fewshot_anno(data_info, support_list)
query_list.append(data_info)
return query_list