Spaces:
Runtime error
Runtime error
File size: 19,429 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# Copyright (c) OpenMMLab. All rights reserved.
import bisect
import copy
import warnings
from pathlib import Path
from typing import Callable, List, Optional, Tuple, Union
import cv2
import numpy as np
import torch
import torch.nn as nn
import torchvision
from mmcv.transforms import Compose
from mmdet.evaluation import get_classes
from mmdet.utils import ConfigType
from mmengine.config import Config
from mmengine.registry import init_default_scope
from mmengine.runner import load_checkpoint
from mmengine.structures import InstanceData
from torch import Tensor
from mmyolo.registry import MODELS
try:
from pytorch_grad_cam import (AblationCAM, AblationLayer,
ActivationsAndGradients)
from pytorch_grad_cam import GradCAM as Base_GradCAM
from pytorch_grad_cam import GradCAMPlusPlus as Base_GradCAMPlusPlus
from pytorch_grad_cam.base_cam import BaseCAM
from pytorch_grad_cam.utils.image import scale_cam_image, show_cam_on_image
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
except ImportError:
pass
def init_detector(
config: Union[str, Path, Config],
checkpoint: Optional[str] = None,
palette: str = 'coco',
device: str = 'cuda:0',
cfg_options: Optional[dict] = None,
) -> nn.Module:
"""Initialize a detector from config file.
Args:
config (str, :obj:`Path`, or :obj:`mmengine.Config`): Config file path,
:obj:`Path`, or the config object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
palette (str): Color palette used for visualization. If palette
is stored in checkpoint, use checkpoint's palette first, otherwise
use externally passed palette. Currently, supports 'coco', 'voc',
'citys' and 'random'. Defaults to coco.
device (str): The device where the anchors will be put on.
Defaults to cuda:0.
cfg_options (dict, optional): Options to override some settings in
the used config.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, (str, Path)):
config = Config.fromfile(config)
elif not isinstance(config, Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if cfg_options is not None:
config.merge_from_dict(cfg_options)
elif 'init_cfg' in config.model.backbone:
config.model.backbone.init_cfg = None
# only change this
# grad based method requires train_cfg
# config.model.train_cfg = None
init_default_scope(config.get('default_scope', 'mmyolo'))
model = MODELS.build(config.model)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
# Weights converted from elsewhere may not have meta fields.
checkpoint_meta = checkpoint.get('meta', {})
# save the dataset_meta in the model for convenience
if 'dataset_meta' in checkpoint_meta:
# mmdet 3.x, all keys should be lowercase
model.dataset_meta = {
k.lower(): v
for k, v in checkpoint_meta['dataset_meta'].items()
}
elif 'CLASSES' in checkpoint_meta:
# < mmdet 3.x
classes = checkpoint_meta['CLASSES']
model.dataset_meta = {'classes': classes, 'palette': palette}
else:
warnings.simplefilter('once')
warnings.warn(
'dataset_meta or class names are not saved in the '
'checkpoint\'s meta data, use COCO classes by default.')
model.dataset_meta = {
'classes': get_classes('coco'),
'palette': palette
}
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
def reshape_transform(feats: Union[Tensor, List[Tensor]],
max_shape: Tuple[int, int] = (20, 20),
is_need_grad: bool = False):
"""Reshape and aggregate feature maps when the input is a multi-layer
feature map.
Takes these tensors with different sizes, resizes them to a common shape,
and concatenates them.
"""
if len(max_shape) == 1:
max_shape = max_shape * 2
if isinstance(feats, torch.Tensor):
feats = [feats]
else:
if is_need_grad:
raise NotImplementedError('The `grad_base` method does not '
'support output multi-activation layers')
max_h = max([im.shape[-2] for im in feats])
max_w = max([im.shape[-1] for im in feats])
if -1 in max_shape:
max_shape = (max_h, max_w)
else:
max_shape = (min(max_h, max_shape[0]), min(max_w, max_shape[1]))
activations = []
for feat in feats:
activations.append(
torch.nn.functional.interpolate(
torch.abs(feat), max_shape, mode='bilinear'))
activations = torch.cat(activations, axis=1)
return activations
class BoxAMDetectorWrapper(nn.Module):
"""Wrap the mmdet model class to facilitate handling of non-tensor
situations during inference."""
def __init__(self,
cfg: ConfigType,
checkpoint: str,
score_thr: float,
device: str = 'cuda:0'):
super().__init__()
self.cfg = cfg
self.device = device
self.score_thr = score_thr
self.checkpoint = checkpoint
self.detector = init_detector(self.cfg, self.checkpoint, device=device)
pipeline_cfg = copy.deepcopy(self.cfg.test_dataloader.dataset.pipeline)
pipeline_cfg[0].type = 'mmdet.LoadImageFromNDArray'
new_test_pipeline = []
for pipeline in pipeline_cfg:
if not pipeline['type'].endswith('LoadAnnotations'):
new_test_pipeline.append(pipeline)
self.test_pipeline = Compose(new_test_pipeline)
self.is_need_loss = False
self.input_data = None
self.image = None
def need_loss(self, is_need_loss: bool):
"""Grad-based methods require loss."""
self.is_need_loss = is_need_loss
def set_input_data(self,
image: np.ndarray,
pred_instances: Optional[InstanceData] = None):
"""Set the input data to be used in the next step."""
self.image = image
if self.is_need_loss:
assert pred_instances is not None
pred_instances = pred_instances.numpy()
data = dict(
img=self.image,
img_id=0,
gt_bboxes=pred_instances.bboxes,
gt_bboxes_labels=pred_instances.labels)
data = self.test_pipeline(data)
else:
data = dict(img=self.image, img_id=0)
data = self.test_pipeline(data)
data['inputs'] = [data['inputs']]
data['data_samples'] = [data['data_samples']]
self.input_data = data
def __call__(self, *args, **kwargs):
assert self.input_data is not None
if self.is_need_loss:
# Maybe this is a direction that can be optimized
# self.detector.init_weights()
self.detector.bbox_head.head_module.training = True
if hasattr(self.detector.bbox_head, 'featmap_sizes'):
# Prevent the model algorithm error when calculating loss
self.detector.bbox_head.featmap_sizes = None
data_ = {}
data_['inputs'] = [self.input_data['inputs']]
data_['data_samples'] = [self.input_data['data_samples']]
data = self.detector.data_preprocessor(data_, training=False)
loss = self.detector._run_forward(data, mode='loss')
if hasattr(self.detector.bbox_head, 'featmap_sizes'):
self.detector.bbox_head.featmap_sizes = None
return [loss]
else:
self.detector.bbox_head.head_module.training = False
with torch.no_grad():
results = self.detector.test_step(self.input_data)
return results
class BoxAMDetectorVisualizer:
"""Box AM visualization class."""
def __init__(self,
method_class,
model: nn.Module,
target_layers: List,
reshape_transform: Optional[Callable] = None,
is_need_grad: bool = False,
extra_params: Optional[dict] = None):
self.target_layers = target_layers
self.reshape_transform = reshape_transform
self.is_need_grad = is_need_grad
if method_class.__name__ == 'AblationCAM':
batch_size = extra_params.get('batch_size', 1)
ratio_channels_to_ablate = extra_params.get(
'ratio_channels_to_ablate', 1.)
self.cam = AblationCAM(
model,
target_layers,
use_cuda=True if 'cuda' in model.device else False,
reshape_transform=reshape_transform,
batch_size=batch_size,
ablation_layer=extra_params['ablation_layer'],
ratio_channels_to_ablate=ratio_channels_to_ablate)
else:
self.cam = method_class(
model,
target_layers,
use_cuda=True if 'cuda' in model.device else False,
reshape_transform=reshape_transform,
)
if self.is_need_grad:
self.cam.activations_and_grads.release()
self.classes = model.detector.dataset_meta['classes']
self.COLORS = np.random.uniform(0, 255, size=(len(self.classes), 3))
def switch_activations_and_grads(self, model) -> None:
"""In the grad-based method, we need to switch
``ActivationsAndGradients`` layer, otherwise an error will occur."""
self.cam.model = model
if self.is_need_grad is True:
self.cam.activations_and_grads = ActivationsAndGradients(
model, self.target_layers, self.reshape_transform)
self.is_need_grad = False
else:
self.cam.activations_and_grads.release()
self.is_need_grad = True
def __call__(self, img, targets, aug_smooth=False, eigen_smooth=False):
img = torch.from_numpy(img)[None].permute(0, 3, 1, 2)
return self.cam(img, targets, aug_smooth, eigen_smooth)[0, :]
def show_am(self,
image: np.ndarray,
pred_instance: InstanceData,
grayscale_am: np.ndarray,
with_norm_in_bboxes: bool = False):
"""Normalize the AM to be in the range [0, 1] inside every bounding
boxes, and zero outside of the bounding boxes."""
boxes = pred_instance.bboxes
labels = pred_instance.labels
if with_norm_in_bboxes is True:
boxes = boxes.astype(np.int32)
renormalized_am = np.zeros(grayscale_am.shape, dtype=np.float32)
images = []
for x1, y1, x2, y2 in boxes:
img = renormalized_am * 0
img[y1:y2, x1:x2] = scale_cam_image(
[grayscale_am[y1:y2, x1:x2].copy()])[0]
images.append(img)
renormalized_am = np.max(np.float32(images), axis=0)
renormalized_am = scale_cam_image([renormalized_am])[0]
else:
renormalized_am = grayscale_am
am_image_renormalized = show_cam_on_image(
image / 255, renormalized_am, use_rgb=False)
image_with_bounding_boxes = self._draw_boxes(
boxes, labels, am_image_renormalized, pred_instance.get('scores'))
return image_with_bounding_boxes
def _draw_boxes(self,
boxes: List,
labels: List,
image: np.ndarray,
scores: Optional[List] = None):
"""draw boxes on image."""
for i, box in enumerate(boxes):
label = labels[i]
color = self.COLORS[label]
cv2.rectangle(image, (int(box[0]), int(box[1])),
(int(box[2]), int(box[3])), color, 2)
if scores is not None:
score = scores[i]
text = str(self.classes[label]) + ': ' + str(
round(score * 100, 1))
else:
text = self.classes[label]
cv2.putText(
image,
text, (int(box[0]), int(box[1] - 5)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
color,
1,
lineType=cv2.LINE_AA)
return image
class DetAblationLayer(AblationLayer):
"""Det AblationLayer."""
def __init__(self):
super().__init__()
self.activations = None
def set_next_batch(self, input_batch_index, activations,
num_channels_to_ablate):
"""Extract the next batch member from activations, and repeat it
num_channels_to_ablate times."""
if isinstance(activations, torch.Tensor):
return super().set_next_batch(input_batch_index, activations,
num_channels_to_ablate)
self.activations = []
for activation in activations:
activation = activation[
input_batch_index, :, :, :].clone().unsqueeze(0)
self.activations.append(
activation.repeat(num_channels_to_ablate, 1, 1, 1))
def __call__(self, x):
"""Go over the activation indices to be ablated, stored in
self.indices."""
result = self.activations
if isinstance(result, torch.Tensor):
return super().__call__(x)
channel_cumsum = np.cumsum([r.shape[1] for r in result])
num_channels_to_ablate = result[0].size(0) # batch
for i in range(num_channels_to_ablate):
pyramid_layer = bisect.bisect_right(channel_cumsum,
self.indices[i])
if pyramid_layer > 0:
index_in_pyramid_layer = self.indices[i] - channel_cumsum[
pyramid_layer - 1]
else:
index_in_pyramid_layer = self.indices[i]
result[pyramid_layer][i, index_in_pyramid_layer, :, :] = -1000
return result
class DetBoxScoreTarget:
"""Det Score calculation class.
In the case of the grad-free method, the calculation method is that
for every original detected bounding box specified in "bboxes",
assign a score on how the current bounding boxes match it,
1. In Bbox IoU
2. In the classification score.
3. In Mask IoU if ``segms`` exist.
If there is not a large enough overlap, or the category changed,
assign a score of 0. The total score is the sum of all the box scores.
In the case of the grad-based method, the calculation method is
the sum of losses after excluding a specific key.
"""
def __init__(self,
pred_instance: InstanceData,
match_iou_thr: float = 0.5,
device: str = 'cuda:0',
ignore_loss_params: Optional[List] = None):
self.focal_bboxes = pred_instance.bboxes
self.focal_labels = pred_instance.labels
self.match_iou_thr = match_iou_thr
self.device = device
self.ignore_loss_params = ignore_loss_params
if ignore_loss_params is not None:
assert isinstance(self.ignore_loss_params, list)
def __call__(self, results):
output = torch.tensor([0.], device=self.device)
if 'loss_cls' in results:
# grad-based method
# results is dict
for loss_key, loss_value in results.items():
if 'loss' not in loss_key or \
loss_key in self.ignore_loss_params:
continue
if isinstance(loss_value, list):
output += sum(loss_value)
else:
output += loss_value
return output
else:
# grad-free method
# results is DetDataSample
pred_instances = results.pred_instances
if len(pred_instances) == 0:
return output
pred_bboxes = pred_instances.bboxes
pred_scores = pred_instances.scores
pred_labels = pred_instances.labels
for focal_box, focal_label in zip(self.focal_bboxes,
self.focal_labels):
ious = torchvision.ops.box_iou(focal_box[None],
pred_bboxes[..., :4])
index = ious.argmax()
if ious[0, index] > self.match_iou_thr and pred_labels[
index] == focal_label:
# TODO: Adaptive adjustment of weights based on algorithms
score = ious[0, index] + pred_scores[index]
output = output + score
return output
class SpatialBaseCAM(BaseCAM):
"""CAM that maintains spatial information.
Gradients are often averaged over the spatial dimension in CAM
visualization for classification, but this is unreasonable in detection
tasks. There is no need to average the gradients in the detection task.
"""
def get_cam_image(self,
input_tensor: torch.Tensor,
target_layer: torch.nn.Module,
targets: List[torch.nn.Module],
activations: torch.Tensor,
grads: torch.Tensor,
eigen_smooth: bool = False) -> np.ndarray:
weights = self.get_cam_weights(input_tensor, target_layer, targets,
activations, grads)
weighted_activations = weights * activations
if eigen_smooth:
cam = get_2d_projection(weighted_activations)
else:
cam = weighted_activations.sum(axis=1)
return cam
class GradCAM(SpatialBaseCAM, Base_GradCAM):
"""Gradients are no longer averaged over the spatial dimension."""
def get_cam_weights(self, input_tensor, target_layer, target_category,
activations, grads):
return grads
class GradCAMPlusPlus(SpatialBaseCAM, Base_GradCAMPlusPlus):
"""Gradients are no longer averaged over the spatial dimension."""
def get_cam_weights(self, input_tensor, target_layers, target_category,
activations, grads):
grads_power_2 = grads**2
grads_power_3 = grads_power_2 * grads
# Equation 19 in https://arxiv.org/abs/1710.11063
sum_activations = np.sum(activations, axis=(2, 3))
eps = 0.000001
aij = grads_power_2 / (
2 * grads_power_2 +
sum_activations[:, :, None, None] * grads_power_3 + eps)
# Now bring back the ReLU from eq.7 in the paper,
# And zero out aijs where the activations are 0
aij = np.where(grads != 0, aij, 0)
weights = np.maximum(grads, 0) * aij
return weights
|