|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import models |
|
from models import register |
|
from utils import make_coord |
|
|
|
|
|
@register('liif') |
|
class LIIF(nn.Module): |
|
|
|
def __init__(self, encoder_spec, imnet_spec=None, |
|
local_ensemble=True, feat_unfold=True, cell_decode=True): |
|
super().__init__() |
|
self.local_ensemble = local_ensemble |
|
self.feat_unfold = feat_unfold |
|
self.cell_decode = cell_decode |
|
|
|
self.encoder = models.make(encoder_spec) |
|
|
|
if imnet_spec is not None: |
|
imnet_in_dim = self.encoder.out_dim |
|
if self.feat_unfold: |
|
imnet_in_dim *= 9 |
|
imnet_in_dim += 2 |
|
if self.cell_decode: |
|
imnet_in_dim += 2 |
|
self.imnet = models.make(imnet_spec, args={'in_dim': imnet_in_dim}) |
|
else: |
|
self.imnet = None |
|
|
|
def gen_feat(self, inp): |
|
self.feat = self.encoder(inp) |
|
return self.feat |
|
|
|
def query_rgb(self, coord, cell=None): |
|
feat = self.feat |
|
|
|
if self.imnet is None: |
|
ret = F.grid_sample(feat, coord.flip(-1).unsqueeze(1), |
|
mode='nearest', align_corners=False)[:, :, 0, :] \ |
|
.permute(0, 2, 1) |
|
return ret |
|
|
|
if self.feat_unfold: |
|
feat = F.unfold(feat, 3, padding=1).view( |
|
feat.shape[0], feat.shape[1] * 9, feat.shape[2], feat.shape[3]) |
|
|
|
if self.local_ensemble: |
|
vx_lst = [-1, 1] |
|
vy_lst = [-1, 1] |
|
eps_shift = 1e-6 |
|
else: |
|
vx_lst, vy_lst, eps_shift = [0], [0], 0 |
|
|
|
|
|
rx = 2 / feat.shape[-2] / 2 |
|
ry = 2 / feat.shape[-1] / 2 |
|
|
|
feat_coord = make_coord(feat.shape[-2:], flatten=False).cuda() \ |
|
.permute(2, 0, 1) \ |
|
.unsqueeze(0).expand(feat.shape[0], 2, *feat.shape[-2:]) |
|
|
|
preds = [] |
|
areas = [] |
|
for vx in vx_lst: |
|
for vy in vy_lst: |
|
coord_ = coord.clone() |
|
coord_[:, :, 0] += vx * rx + eps_shift |
|
coord_[:, :, 1] += vy * ry + eps_shift |
|
coord_.clamp_(-1 + 1e-6, 1 - 1e-6) |
|
q_feat = F.grid_sample( |
|
feat, coord_.flip(-1).unsqueeze(1), |
|
mode='nearest', align_corners=False)[:, :, 0, :] \ |
|
.permute(0, 2, 1) |
|
q_coord = F.grid_sample( |
|
feat_coord, coord_.flip(-1).unsqueeze(1), |
|
mode='nearest', align_corners=False)[:, :, 0, :] \ |
|
.permute(0, 2, 1) |
|
rel_coord = coord - q_coord |
|
rel_coord[:, :, 0] *= feat.shape[-2] |
|
rel_coord[:, :, 1] *= feat.shape[-1] |
|
inp = torch.cat([q_feat, rel_coord], dim=-1) |
|
|
|
if self.cell_decode: |
|
rel_cell = cell.clone() |
|
rel_cell[:, :, 0] *= feat.shape[-2] |
|
rel_cell[:, :, 1] *= feat.shape[-1] |
|
inp = torch.cat([inp, rel_cell], dim=-1) |
|
|
|
bs, q = coord.shape[:2] |
|
pred = self.imnet(inp.view(bs * q, -1)).view(bs, q, -1) |
|
preds.append(pred) |
|
|
|
area = torch.abs(rel_coord[:, :, 0] * rel_coord[:, :, 1]) |
|
areas.append(area + 1e-9) |
|
|
|
tot_area = torch.stack(areas).sum(dim=0) |
|
if self.local_ensemble: |
|
t = areas[0]; areas[0] = areas[3]; areas[3] = t |
|
t = areas[1]; areas[1] = areas[2]; areas[2] = t |
|
ret = 0 |
|
for pred, area in zip(preds, areas): |
|
ret = ret + pred * (area / tot_area).unsqueeze(-1) |
|
return ret |
|
|
|
def forward(self, inp, coord, cell): |
|
self.gen_feat(inp) |
|
return self.query_rgb(coord, cell) |
|
|