# coding: utf-8 """ This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation. """ import torch import torch.nn as nn # from timm.models.layers import trunc_normal_, DropPath from .util import LayerNorm, DropPath, trunc_normal_, GRN __all__ = ['convnextv2_tiny'] class Block(nn.Module): """ ConvNeXtV2 Block. Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 """ def __init__(self, dim, drop_path=0.): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.grn = GRN(4 * dim) self.pwconv2 = nn.Linear(4 * dim, dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x class ConvNeXtV2(nn.Module): """ ConvNeXt V2 Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__( self, in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., **kwargs ): super().__init__() self.depths = depths self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), LayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential( *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])] ) self.stages.append(stage) cur += depths[i] self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer # NOTE: the output semantic items num_bins = kwargs.get('num_bins', 66) num_kp = kwargs.get('num_kp', 24) # the number of implicit keypoints self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) # implicit keypoints # print('dims[-1]: ', dims[-1]) self.fc_scale = nn.Linear(dims[-1], 1) # scale self.fc_pitch = nn.Linear(dims[-1], num_bins) # pitch bins self.fc_yaw = nn.Linear(dims[-1], num_bins) # yaw bins self.fc_roll = nn.Linear(dims[-1], num_bins) # roll bins self.fc_t = nn.Linear(dims[-1], 3) # translation self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) # expression / delta def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward_features(self, x): for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C) def forward(self, x): x = self.forward_features(x) # implicit keypoints kp = self.fc_kp(x) # pose and expression deformation pitch = self.fc_pitch(x) yaw = self.fc_yaw(x) roll = self.fc_roll(x) t = self.fc_t(x) exp = self.fc_exp(x) scale = self.fc_scale(x) ret_dct = { 'pitch': pitch, 'yaw': yaw, 'roll': roll, 't': t, 'exp': exp, 'scale': scale, 'kp': kp, # canonical keypoint } return ret_dct def convnextv2_tiny(**kwargs): model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) return model