# Loading key libraries import streamlit as st import os import numpy as np import pandas as pd from PIL import Image import matplotlib.pyplot as plt import seaborn as sns import requests import datetime # set api endpoint URL = 'https://bright1-sales-forecasting-ap1-2.hf.space' API_ENDPOINT = '/predict' # get list/choices for inputs CITIES = ['Accra', 'Aflao', 'Akim Oda', 'Akwatia', 'Bekwai', 'Cape coast', 'Elmina,', 'Gbawe', 'Ho', 'Hohoe', 'intampo', 'Koforidua', 'Kumasi', 'Mampong', 'Obuasi', 'Prestea', 'Suhum', 'Tamale', 'Techiman', 'Tema', 'Teshie', 'Winneba'] CLUSTER = [ i for i in range(0, 17)] STORE_ID = [ i for i in range(1, 55)] CATEGORY_ID = [ i for i in range(0, 35)] # Setting the page configurations st.set_page_config(page_title = "Prediction Forecasting", layout= "wide", initial_sidebar_state= "auto") # Setting the page title st.title("Grocery Store Forecasting Prediction") # src\app\images1.jpg image1 = Image.open('images1.jpg') def make_prediction(store_id, category_id, onpromotion, city, store_type, cluster, date): parameters = { 'store_id':int(store_id), 'category_id':int(category_id), 'onpromotion' :int(onpromotion), 'city' : city, 'store_type' : int(store_type), 'cluster': int(cluster), 'date_': date, } # make a request to the api response = requests.post(url=f'{URL}{API_ENDPOINT}', params=parameters) sales_value = response.json()['sales'] sales_value = round(sales_value, 4) return sales_value st.image(image1, width = 700) st.sidebar.markdown('User Input Details and Information') # Create interface date= st.sidebar.date_input("Enter the Date",datetime.date(2023, 6, 30)) store_id= st.sidebar.selectbox('Store id', options=STORE_ID) category_id= st.sidebar.selectbox('categegory_id', options=CATEGORY_ID) onpromotion= st.sidebar.number_input('onpromotion', step=1) city = st.sidebar.selectbox("city:", options= CITIES) store_type= st.sidebar.selectbox('type', options=[0, 1, 2, 3, 4]) cluster = st.sidebar.selectbox('cluster', options = CLUSTER ) # get predicted value if st.sidebar.button('Predict', use_container_width=True, type='primary'): # make prediction sales_value = make_prediction(store_id, category_id, onpromotion,city, store_type, cluster, date) st.success('The predicted target is ' + str(sales_value))