# Loading key libraries import streamlit as st import os import pickle import numpy as np import pandas as pd import re from pathlib import Path from PIL import Image import matplotlib.pyplot as plt import seaborn as sns import requests # set api endpoint URL = 'https://bright1-sales-forecasting-api.hf.space' API_ENDPOINT = '/predict' # Setting the page configurations st.set_page_config(page_title = "Prediction Forecasting", layout= "wide", initial_sidebar_state= "auto") # Setting the page title st.title("Grocery Store Forecasting Prediction") # Load the saved data df = pd.read_csv('Grocery.csv') image1 = Image.open('images1.jpg') image2 = Image.open('image 2.jpg') def make_prediction(store_id, category_id, onpromotion, year,month, dayofmonth, dayofweek, dayofyear,weekofyear, quarter, is_month_start, is_month_end, is_quarter_start, is_quarter_end, is_year_start, is_year_end, year_weekofyear,city, store_type, cluster): parameters = { 'store_id':int(store_id), 'category_id':int(category_id), 'onpromotion' :int(onpromotion), 'year' : int(year), 'month' : int(month), 'dayofmonth' :int(dayofmonth), 'dayofweek' : int(dayofweek), 'dayofyear' : int(dayofyear), 'weekofyear' : int(weekofyear), 'quarter' : int(quarter), 'is_month_start' : int(is_month_start), 'is_month_end' : int(is_month_end), 'is_quarter_start' : int(is_quarter_start), 'is_quarter_end' : int(is_quarter_end), 'is_year_start' : int(is_year_start), 'is_year_end' : (is_year_end), 'year_weekofyear' : int(year_weekofyear), 'city' : city, 'store_type' : int(store_type), 'cluster': int(cluster), } response = requests.post(url=f'{URL}{API_ENDPOINT}', params=parameters) sales_value = response.json()['sales'] sales_value = round(sales_value, 4) return sales_value st.image(image1, width = 700) st.sidebar.markdown('User Input Details and Information') store_id= st.sidebar.selectbox('store_id', options = sorted(list(df['store_id'].unique()))) category_id= st.sidebar.selectbox('categegory_id',options = sorted(list(df['category_id'].unique()))) onpromotion= st.sidebar.number_input('onpromotion', min_value= df["onpromotion"].min(), value= df["onpromotion"].min()) year = st.sidebar.selectbox('year', options = sorted(list(df['year'].unique()))) month = st.sidebar.selectbox('month', options = sorted(list(df['month'].unique()))) dayofmonth= st.sidebar.number_input('dayofmonth', min_value= df["dayofmonth"].min(), value= df["dayofmonth"].min()) dayofweek = st.sidebar.number_input('dayofweek', min_value= df["dayofweek"].min(), value= df["dayofweek"].min()) dayofyear = st.sidebar.number_input('dayofyear', min_value= df["dayofyear"].min(), value= df["dayofyear"].min()) weekofyear = st.sidebar.number_input('weekofyear', min_value= df["weekofyear"].min(), value= df["weekofyear"].min()) quarter = st.sidebar.number_input('quarter', min_value= df["quarter"].min(), value= df["quarter"].min()) is_month_start = st.sidebar.number_input('is_month_start', min_value= df["is_month_start"].min(), value= df["is_month_start"].min()) is_month_end = st.sidebar.number_input('is_month_end', min_value= df["is_month_end"].min(), value= df["is_month_end"].min()) is_quarter_start = st.sidebar.number_input('is_quarter_start', min_value= df["is_quarter_start"].min(), value= df["is_quarter_start"].min()) is_quarter_end = st.sidebar.number_input('is_quarter_end', min_value= df["is_quarter_end"].min(), value= df["is_quarter_end"].min()) is_year_start = st.sidebar.number_input('is_year_start', min_value= df["is_year_start"].min(), value= df["is_year_start"].min()) is_year_end = st.sidebar.number_input('is_year_end', min_value= df["is_year_end"].min(), value= df["is_year_end"].min()) year_weekofyear = st.sidebar.number_input('year_weekofyear', min_value= df["year_weekofyear"].min(), value= df["year_weekofyear"].min()) city = st.sidebar.selectbox("city:", options= sorted(set(df["city"]))) store_type= st.sidebar.number_input('type', min_value= df["type"].min(), value= df["type"].min()) cluster = st.sidebar.selectbox('cluster', options = sorted(list(df['cluster'].unique()))) # make prediction sales_value = make_prediction(store_id, category_id, onpromotion, year,month, dayofmonth, dayofweek, dayofyear,weekofyear, quarter, is_month_start, is_month_end, is_quarter_start, is_quarter_end, is_year_start, is_year_end, year_weekofyear,city, store_type, cluster) # get predicted value if st.button('Predict'): st.success('The predicted target is ' + str(sales_value))