import tensorflow as tf from tensorflow import keras from tensorflow.keras import Model, Sequential, layers class TransformerBlock(layers.Layer): def __init__(self, n_embedding, n_head, attention_percentage_drop): super().__init__() self.att = layers.MultiHeadAttention(n_head, n_embedding) self.ffn = Sequential( [ layers.Dense(n_embedding * 4, activation="relu"), layers.Dense(n_embedding), ] ) self.layernorm1 = layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = layers.LayerNormalization(epsilon=1e-6) self.dropout1 = layers.Dropout(attention_percentage_drop) self.dropout2 = layers.Dropout(attention_percentage_drop) def causal_attention_mask(self, batch_size, n_dest, n_src, dtype): """ Mask the upper half of the dot product matrix in self attention. This prevents flow of information from future tokens to current token. 1's in the lower triangle, counting from the lower right corner. """ i = tf.range(n_dest)[:, None] j = tf.range(n_src) m = i >= j - n_src + n_dest mask = tf.cast(m, dtype) mask = tf.reshape(mask, [1, n_dest, n_src]) mult = tf.concat( [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], 0 ) return tf.tile(mask, mult) def call(self, inputs): input_shape = tf.shape(inputs) batch_size = input_shape[0] seq_len = input_shape[1] causal_mask = self.causal_attention_mask(batch_size, seq_len, seq_len, tf.bool) attention_output = self.att(inputs, inputs, attention_mask=causal_mask) attention_output = self.dropout1(attention_output) out1 = self.layernorm1(inputs + attention_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output) return self.layernorm2(out1 + ffn_output) class TransformerBlockV2(layers.Layer): def __init__(self, n_embedding, n_head, attention_percentage_drop): super().__init__() self.att = layers.MultiHeadAttention(n_head, n_embedding) self.mlp = Sequential( [ layers.Dense(n_embedding * 4), layers.Activation("gelu"), layers.Dense(n_embedding), layers.Dropout(attention_percentage_drop), ] ) self.layernorm1 = layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = layers.LayerNormalization(epsilon=1e-6) def causal_attention_mask(self, batch_size, n_dest, n_src, dtype): """ Mask the upper half of the dot product matrix in self attention. This prevents flow of information from future tokens to current token. 1's in the lower triangle, counting from the lower right corner. """ i = tf.range(n_dest)[:, None] j = tf.range(n_src) m = i >= j - n_src + n_dest mask = tf.cast(m, dtype) mask = tf.reshape(mask, [1, n_dest, n_src]) mult = tf.concat( [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], 0 ) return tf.tile(mask, mult) def call(self, inputs): input_shape = tf.shape(inputs) batch_size = input_shape[0] seq_len = input_shape[1] causal_mask = self.causal_attention_mask(batch_size, seq_len, seq_len, tf.bool) h = inputs h = self.layernorm1(h) h = self.att(h, h, attention_mask=causal_mask) h = inputs + h h = h + self.mlp(self.layernorm2(h)) return h class TokenAndPositionEmbedding(layers.Layer): def __init__(self, block_size, vocab_size, n_embedding, embedding_percentage_drop): super(TokenAndPositionEmbedding, self).__init__() self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=n_embedding) self.pos_emb = layers.Embedding(input_dim=block_size, output_dim=n_embedding) self.dropout = layers.Dropout(embedding_percentage_drop) def call(self, x, training=None, mask=None): maxlen = tf.shape(x)[-1] positions = tf.range(start=0, limit=maxlen, delta=1) positions = self.pos_emb(positions) x = self.token_emb(x) return self.dropout(x + positions, training=training) class GPT(Model): def __init__( self, vocab_size, block_size, n_layer, n_head, n_embedding, embedding_percentage_drop, attention_percentage_drop, ): super().__init__() self.block_size = block_size self.embedding_layer = TokenAndPositionEmbedding( block_size=block_size, vocab_size=vocab_size, n_embedding=n_embedding, embedding_percentage_drop=embedding_percentage_drop, ) self.blocks = [ TransformerBlock( n_embedding=n_embedding, n_head=n_head, attention_percentage_drop=attention_percentage_drop, ) for _ in range(n_layer) ] self.layer_norm = layers.LayerNormalization(epsilon=1e-6) self.outputs = layers.Dense(vocab_size) # loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # self.compile( # "adam", # loss=loss_fn, # ) # No loss and optimization based on word embeddings from transformer block # def build(self, input_shape): # self.input_shape = input_shape def summary(self): x = layers.Input(shape=self.input_shape[1:]) model = Model(inputs=[x], outputs=self.call(x)) return model.summary() def build_graph(self, raw_shape): x = tf.keras.layers.Input(shape=(raw_shape), ragged=True) return tf.keras.Model(inputs=[x], outputs=self.call(x)) def call(self, inputs, training=True, mask=None): token_embeddings = self.embedding_layer(inputs) h = token_embeddings for block in self.blocks: h = block(h) h = self.layer_norm(h) logits = self.outputs(h) return logits