import gradio as gr import re import cohere import numpy as np import textwrap import os import pandas as pd import requests import fitz from tqdm.auto import tqdm from spacy.lang.en import English from pinecone import Pinecone, ServerlessSpec # Retrieve the API keys from environment variables COHERE_KEY = os.getenv('COHERE_API_KEY') PINECONE_KEY = os.getenv('PINECONE_API_KEY') # Initialize global variables co = cohere.Client(COHERE_KEY) pc = Pinecone(api_key=PINECONE_KEY) index_name = 'cohere-pinecone' nlp = English() nlp.add_pipe("sentencizer") # Global variable to track if a PDF has been processed pdf_processed = False def text_formatter(text: str) -> str: return text.replace("\n", " ").strip() def open_and_read_pdf(pdf_path: str, page_offset: int = 0) -> list[dict]: doc = fitz.open(pdf_path) pages_and_texts = [] for page_number, page in enumerate(doc): text = page.get_text() text = text_formatter(text) pages_and_texts.append({ "page_number": page_number - page_offset, "page_char_count": len(text), "page_word_count": len(text.split(" ")), "page_sentence_count_raw": len(text.split(". ")), "page_token_count": len(text) / 4, "text": text }) return pages_and_texts def split_list(input_list: list, slice_size: int) -> list[list[str]]: return [input_list[i:i + slice_size] for i in range(0, len(input_list), slice_size)] def process_pdf(pdf_path): pages_and_texts = open_and_read_pdf(pdf_path=pdf_path) for item in pages_and_texts: item["sentences"] = [str(sentence) for sentence in nlp(item["text"]).sents] item["page_sentence_count_spacy"] = len(item["sentences"]) item["sentence_chunks"] = split_list(input_list=item["sentences"], slice_size=10) item["num_chunks"] = len(item["sentence_chunks"]) pages_and_chunks = [] for item in pages_and_texts: for sentence_chunk in item["sentence_chunks"]: chunk_dict = { "page_number": item["page_number"], "sentence_chunk": "".join(sentence_chunk).replace(" ", " ").strip(), } chunk_dict["sentence_chunk"] = re.sub(r'\.([A-Z])', r'. \1', chunk_dict["sentence_chunk"]) chunk_dict["chunk_char_count"] = len(chunk_dict["sentence_chunk"]) chunk_dict["chunk_word_count"] = len(chunk_dict["sentence_chunk"].split(" ")) chunk_dict["chunk_token_count"] = len(chunk_dict["sentence_chunk"]) / 4 pages_and_chunks.append(chunk_dict) df = pd.DataFrame(pages_and_chunks) pages_and_chunks_over_min_token_len = df[df["chunk_token_count"] > 30].to_dict(orient="records") text_chunks = [item["sentence_chunk"] for item in pages_and_chunks_over_min_token_len] embeds = co.embed( texts=text_chunks, model='embed-english-v2.0', input_type='search_query', truncate='END' ).embeddings if index_name not in pc.list_indexes().names(): pc.create_index( name=index_name, dimension=len(embeds[0]), metric="cosine", spec=ServerlessSpec(cloud='aws', region='us-east-1') ) index = pc.Index(index_name) ids = [str(i) for i in range(len(embeds))] meta = [{'text': text} for text in text_chunks] to_upsert = list(zip(ids, embeds, meta)) batch_size = 128 for i in range(0, len(embeds), batch_size): i_end = min(i+batch_size, len(embeds)) index.upsert(vectors=to_upsert[i:i_end]) return "PDF processed and indexed successfully!" def search_queries(queries: list[str], k: int = 1) -> str: query_embeddings = co.embed( texts=queries, model='embed-english-v2.0', input_type='search_query', truncate='END' ).embeddings index = pc.Index(index_name) all_results = {} for i, query_embedding in enumerate(query_embeddings): res = index.query(vector=query_embedding, top_k=k, include_metadata=True) all_results[queries[i]] = res['matches'] result_str = "" for query, matches in all_results.items(): result_str += f"Results for Query: {query}\n\n" for match in matches: text = match['metadata']['text'] result_str += f"{text}\n{'-'*50}\n\n" result_str += f"\n{'='*100}\n\n" return result_str def chatbot(message, history): if not message.strip(): return "Please enter a valid query." # Split the message into multiple queries queries = [q.strip() for q in message.split('||') if q.strip()] if not queries: return "Please enter at least one valid query." results = [] for query in queries: result = search_queries([query]) results.append(f"Query: {query}\n\n{result}") return "\n\n---\n\n".join(results) def clear_index(): global pdf_processed if not pdf_processed: return "Nothing to clear. Please upload and process a PDF first." try: pc.delete_index(index_name) pdf_processed = False return "Pinecone index cleared successfully!" except Exception as e: return f"Error clearing Pinecone index: {str(e)}" def upload_pdf(file): global pdf_processed if file is None: return "Please upload a PDF file." file_path = file.name result = process_pdf(file_path) pdf_processed = True return result demo = gr.Blocks() with demo: gr.Markdown("# PDF RAG Chatbot with Multi-Query Support") gr.Markdown(""" ## How to use: 1. Upload a PDF and click "Process PDF". 2. Enter your queries in the chat below. 3. For multiple queries, separate them with '||'. 4. Before Uploading a new PDF please clear index. Example: What are macronutrients? || What is the role of vitamins? """) with gr.Row(): with gr.Column(scale=2): pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) with gr.Column(scale=1): process_button = gr.Button("Process PDF") clear_button_2 = gr.Button("Clear Index") status_output = gr.Textbox(label="Status") chatbot_interface = gr.ChatInterface( fn=chatbot, chatbot=gr.Chatbot(height=500), textbox=gr.Textbox(placeholder="Enter your query here...", container=False, scale=7), submit_btn="Send", clear_btn="🗑ī¸ Clear", retry_btn="🔄 Retry", undo_btn="↩ī¸ Undo", theme="soft", examples=[ "What are macronutrients?", "What is the role of vitamins? || How do minerals affect health?", "Define protein? || Define carbohydrates? || Define fats?" ], ) clear_button_1 = gr.Button("Clear Index") process_button.click(upload_pdf, inputs=[pdf_upload], outputs=[status_output]) clear_button_1.click(clear_index, inputs=None, outputs=[status_output]) clear_button_2.click(clear_index, inputs=None, outputs=[status_output]) demo.launch()