from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline from PIL import Image import gradio as gr import random import torch import math css = """ .btn-green { background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; } """ def generate(prompt, turbo_steps, samp_steps, seed, progress=gr.Progress(track_tqdm=True), negative_prompt = ""): print("prompt = ", prompt) print("negative prompt = ", negative_prompt) if seed < 0: seed = random.randint(1,999999) image = txt2img( prompt, num_inference_steps=turbo_steps, guidance_scale=0.0, generator=torch.manual_seed(seed), ).images[0] upscaled_image = image.resize((1024,1024), 1) final_image = img2img( prompt=prompt, negative_prompt=negative_prompt, image=upscaled_image, num_inference_steps=samp_steps, guidance_scale=5, strength=1, generator=torch.manual_seed(seed), ).images[0] return [final_image], seed def set_base_models(): txt2img = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype = torch.float16, variant = "fp16" ) txt2img.to("cuda") img2img = StableDiffusionImg2ImgPipeline.from_pretrained( "Lykon/dreamshaper-8", torch_dtype = torch.float16, variant = "fp16", safety_checker=None ) img2img.to("cuda") return txt2img, img2img with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative Prompt") submit_btn = gr.Button("Generate", elem_classes="btn-green") with gr.Row(): turbo_steps = gr.Slider(1, 4, value=1, step=1, label="Turbo steps") sampling_steps = gr.Slider(1, 6, value=3, step=1, label="Refiner steps") seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0) lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False) gallery = gr.Gallery(show_label=False, preview=True, container=False, height=1100) submit_btn.click(generate, [prompt, turbo_steps, sampling_steps, seed, negative_prompt], [gallery, lastSeed], queue=True) txt2img, img2img = set_base_models() demo.launch(debug=True)