Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,8 +2,7 @@ import datetime
|
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
import yfinance as yf
|
| 5 |
-
import seaborn as sns
|
| 6 |
-
|
| 7 |
sns.set()
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import plotly.graph_objects as go
|
|
@@ -18,6 +17,7 @@ from dateutil.relativedelta import relativedelta
|
|
| 18 |
|
| 19 |
index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)']
|
| 20 |
ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'}
|
|
|
|
| 21 |
|
| 22 |
global START_DATE, END_DATE
|
| 23 |
|
|
@@ -28,23 +28,18 @@ demo = gr.Blocks()
|
|
| 28 |
stock_names = []
|
| 29 |
|
| 30 |
with demo:
|
| 31 |
-
d1 = gr.Dropdown(index_options, label='Please select Index...',
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
# d3 = gr.Dropdown(['General News'])
|
| 39 |
|
| 40 |
def forecast_series(series, model="ARIMA", forecast_period=7):
|
| 41 |
-
|
| 42 |
predictions = list()
|
| 43 |
if series.shape[1] > 1:
|
| 44 |
series = series['Close'].values.tolist()
|
| 45 |
-
|
| 46 |
if model == "ARIMA":
|
| 47 |
-
## Do grid search here --> Custom for all stocks
|
| 48 |
for i in range(forecast_period):
|
| 49 |
model = ARIMA(series, order=(5, 1, 0))
|
| 50 |
model_fit = model.fit()
|
|
@@ -52,74 +47,69 @@ with demo:
|
|
| 52 |
yhat = output[0]
|
| 53 |
predictions.append(yhat)
|
| 54 |
series.append(yhat)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
return predictions
|
| 57 |
|
| 58 |
-
|
| 59 |
def is_business_day(a_date):
|
| 60 |
return a_date.weekday() < 5
|
| 61 |
|
| 62 |
-
|
| 63 |
def get_stocks_from_index(idx):
|
| 64 |
stock_data = PyTickerSymbols()
|
| 65 |
-
# indices = stock_data.get_all_indices()
|
| 66 |
index = ticker_dict[idx]
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
# 'name', 'symbol', 'country', 'indices', 'industries', 'symbols', 'metadata', 'isins', 'akas'
|
| 71 |
-
stocks = list(stock_data.get_stocks_by_index(index)) ##converting filter object to list
|
| 72 |
-
stock_names = []
|
| 73 |
-
for stock in stocks:
|
| 74 |
-
stock_names.append(stock['name'] + ':' + stock['symbol'])
|
| 75 |
-
d2 = gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True)
|
| 76 |
-
return d2
|
| 77 |
-
|
| 78 |
|
| 79 |
d1.input(get_stocks_from_index, d1, d2)
|
| 80 |
-
out = gr.Plot(every=10)
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
def get_stock_graph(idx, stock):
|
| 84 |
-
|
| 85 |
-
stock_name = stock.split(":")[0]
|
| 86 |
-
ticker_name = stock.split(":")[1]
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
if ticker_dict[idx] == 'FTSE 100':
|
| 89 |
-
if ticker_name[-1]
|
| 90 |
-
ticker_name += 'L'
|
| 91 |
-
else:
|
| 92 |
-
ticker_name += '.L'
|
| 93 |
elif ticker_dict[idx] == 'CAC 40':
|
| 94 |
ticker_name += '.PA'
|
| 95 |
|
| 96 |
-
|
| 97 |
-
# data = yf.download(tickers="MSFT", period="5d", interval="1m")
|
| 98 |
-
series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE) # stock.split(":")[1]
|
| 99 |
series = series.reset_index()
|
| 100 |
|
| 101 |
-
predictions = forecast_series(series)
|
| 102 |
|
| 103 |
last_date = pd.to_datetime(series['Date'].values[-1])
|
| 104 |
-
forecast_week = []
|
| 105 |
-
|
| 106 |
-
while len(forecast_week) != FORECAST_PERIOD:
|
| 107 |
-
if is_business_day(last_date):
|
| 108 |
-
forecast_week.append(last_date)
|
| 109 |
-
last_date += timedelta(days=1)
|
| 110 |
|
| 111 |
forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
plt.title("Stock Price of {}".format(stock_name), size='x-large', color='blue') # stock.split(":")[0]
|
| 120 |
-
text = "Your stock is:" + str(stock)
|
| 121 |
return fig
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
d2.input(get_stock_graph, [d1, d2], out)
|
| 125 |
demo.launch()
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
import yfinance as yf
|
| 5 |
+
import seaborn as sns
|
|
|
|
| 6 |
sns.set()
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import plotly.graph_objects as go
|
|
|
|
| 17 |
|
| 18 |
index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)']
|
| 19 |
ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'}
|
| 20 |
+
time_intervals = ['1d', '1m', '5m', '15m', '60m']
|
| 21 |
|
| 22 |
global START_DATE, END_DATE
|
| 23 |
|
|
|
|
| 28 |
stock_names = []
|
| 29 |
|
| 30 |
with demo:
|
| 31 |
+
d1 = gr.Dropdown(index_options, label='Please select Index...', info='Will be adding more indices later on', interactive=True)
|
| 32 |
+
d2 = gr.Dropdown([], label='Please Select Stock from your selected index', interactive=True)
|
| 33 |
+
d3 = gr.Dropdown(time_intervals, label='Select Time Interval', value='1d', interactive=True)
|
| 34 |
+
d4 = gr.Radio(['Line Graph', 'Candlestick Graph'], label='Select Graph Type', value='Line Graph', interactive=True)
|
| 35 |
+
d5 = gr.Dropdown(['ARIMA', 'Prophet', 'LSTM'], label='Select Forecasting Method', value='ARIMA', interactive=True)
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
def forecast_series(series, model="ARIMA", forecast_period=7):
|
|
|
|
| 38 |
predictions = list()
|
| 39 |
if series.shape[1] > 1:
|
| 40 |
series = series['Close'].values.tolist()
|
| 41 |
+
|
| 42 |
if model == "ARIMA":
|
|
|
|
| 43 |
for i in range(forecast_period):
|
| 44 |
model = ARIMA(series, order=(5, 1, 0))
|
| 45 |
model_fit = model.fit()
|
|
|
|
| 47 |
yhat = output[0]
|
| 48 |
predictions.append(yhat)
|
| 49 |
series.append(yhat)
|
| 50 |
+
elif model == "Prophet":
|
| 51 |
+
# Implement Prophet forecasting method
|
| 52 |
+
pass
|
| 53 |
+
elif model == "LSTM":
|
| 54 |
+
# Implement LSTM forecasting method
|
| 55 |
+
pass
|
| 56 |
|
| 57 |
return predictions
|
| 58 |
|
|
|
|
| 59 |
def is_business_day(a_date):
|
| 60 |
return a_date.weekday() < 5
|
| 61 |
|
|
|
|
| 62 |
def get_stocks_from_index(idx):
|
| 63 |
stock_data = PyTickerSymbols()
|
|
|
|
| 64 |
index = ticker_dict[idx]
|
| 65 |
+
stocks = list(stock_data.get_stocks_by_index(index))
|
| 66 |
+
stock_names = [f"{stock['name']}:{stock['symbol']}" for stock in stocks]
|
| 67 |
+
return gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
d1.input(get_stocks_from_index, d1, d2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
def get_stock_graph(idx, stock, interval, graph_type, forecast_method):
|
| 72 |
+
stock_name, ticker_name = stock.split(":")
|
| 73 |
+
|
| 74 |
if ticker_dict[idx] == 'FTSE 100':
|
| 75 |
+
ticker_name += '.L' if ticker_name[-1] != '.' else 'L'
|
|
|
|
|
|
|
|
|
|
| 76 |
elif ticker_dict[idx] == 'CAC 40':
|
| 77 |
ticker_name += '.PA'
|
| 78 |
|
| 79 |
+
series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE, interval=interval)
|
|
|
|
|
|
|
| 80 |
series = series.reset_index()
|
| 81 |
|
| 82 |
+
predictions = forecast_series(series, model=forecast_method)
|
| 83 |
|
| 84 |
last_date = pd.to_datetime(series['Date'].values[-1])
|
| 85 |
+
forecast_week = [last_date + timedelta(days=i) for i in range(1, FORECAST_PERIOD + 1) if is_business_day(last_date + timedelta(days=i))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
|
| 88 |
|
| 89 |
+
if graph_type == 'Line Graph':
|
| 90 |
+
fig = go.Figure()
|
| 91 |
+
fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical'))
|
| 92 |
+
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
|
| 93 |
+
else: # Candlestick Graph
|
| 94 |
+
fig = go.Figure(data=[go.Candlestick(x=series['Date'],
|
| 95 |
+
open=series['Open'],
|
| 96 |
+
high=series['High'],
|
| 97 |
+
low=series['Low'],
|
| 98 |
+
close=series['Close'],
|
| 99 |
+
name='Historical')])
|
| 100 |
+
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
|
| 101 |
+
|
| 102 |
+
fig.update_layout(title=f"Stock Price of {stock_name}",
|
| 103 |
+
xaxis_title="Date",
|
| 104 |
+
yaxis_title="Price")
|
| 105 |
|
|
|
|
|
|
|
| 106 |
return fig
|
| 107 |
|
| 108 |
+
out = gr.Plot()
|
| 109 |
+
inputs = [d1, d2, d3, d4, d5]
|
| 110 |
+
d2.input(get_stock_graph, inputs, out)
|
| 111 |
+
d3.input(get_stock_graph, inputs, out)
|
| 112 |
+
d4.input(get_stock_graph, inputs, out)
|
| 113 |
+
d5.input(get_stock_graph, inputs, out)
|
| 114 |
|
|
|
|
| 115 |
demo.launch()
|