import os import pandas as pd import matplotlib.pyplot as plt import numpy as np from src.assets.text_content import SHORT_NAMES def update_cols(df: pd.DataFrame) -> pd.DataFrame: ''' Change three header rows to a single header row Args: df: Raw dataframe containing 3 separate header rows Remove this function if the dataframe has only one header row Returns: df: Updated dataframe which has only 1 header row instead of 3 ''' default_cols = list(df.columns) # First 4 columns are initalised in 'update', Append additional columns for games Model, Clemscore, ALL(PLayed) and ALL(Main Score) update = ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)'] game_metrics = default_cols[4:] # Change columns Names for each Game for i in range(len(game_metrics)): if i%3 == 0: game = game_metrics[i] update.append(str(game).capitalize() + "(Played)") update.append(str(game).capitalize() + "(Quality Score)") update.append(str(game).capitalize() + "(Quality Score[std])") # Create a dict to change names of the columns map_cols = {} for i in range(len(default_cols)): map_cols[default_cols[i]] = str(update[i]) df = df.rename(columns=map_cols) df = df.iloc[2:] return df def process_df(df: pd.DataFrame) -> pd.DataFrame: ''' Process dataframe - Remove repition in model names, convert datatypes to sort by "float" instead of "str" Args: df: Unprocessed Dataframe (after using update_cols) Returns: df: Processed Dataframe ''' # Change column type to float from str list_column_names = list(df.columns) model_col_name = list_column_names[0] for col in list_column_names: if col != model_col_name: df[col] = df[col].astype(float) # Remove repetition in model names, if any models_list = [] for i in range(len(df)): model_name = df.iloc[i][model_col_name] splits = model_name.split('--') splits = [split.replace('-t0.0', '') for split in splits] # Comment to not remove -t0.0 if splits[0] == splits[1]: models_list.append(splits[0]) else: models_list.append(splits[0] + "--" + splits[1]) df[model_col_name] = models_list return df def get_data(path: str, flag: bool): ''' Get a list of all version names and respective Dataframes Args: path: Path to the directory containing CSVs of different versions -> v0.9.csv, v1.0.csv, .... flag: Set this flag to include the latest version in Details and Versions tab Returns: latest_df: singular list containing dataframe of the latest version of the leaderboard with only 4 columns latest_vname: list of the name of latest version previous_df: list of dataframes for previous versions (can skip latest version if required) previous_vname: list of the names for the previous versions (INCLUDED IN Details and Versions Tab) ''' # Check if Directory is empty list_versions = os.listdir(path) if not list_versions: print("Directory is empty") else: files = [file for file in list_versions if file.endswith('.csv')] files.sort(reverse=True) file_names = [os.path.splitext(file)[0] for file in files] DFS = [] for file in files: df = pd.read_csv(os.path.join(path, file)) df = update_cols(df) # Remove if by default there is only one header row df = process_df(df) # Process Dataframe df = df.sort_values(by=list(df.columns)[1], ascending=False) # Sort by clemscore DFS.append(df) # Only keep relavant columns for the main leaderboard latest_df_dummy = DFS[0] all_columns = list(latest_df_dummy.columns) keep_columns = all_columns[0:4] latest_df_dummy = latest_df_dummy.drop(columns=[c for c in all_columns if c not in keep_columns]) latest_df = [latest_df_dummy] latest_vname = [file_names[0]] previous_df = [] previous_vname = [] for df, name in zip(DFS, file_names): previous_df.append(df) previous_vname.append(name) if not flag: previous_df.pop(0) previous_vname.pop(0) return latest_df, latest_vname, previous_df, previous_vname return None # ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)'] def compare_plots(df: pd.DataFrame, LIST: list): ''' Quality Score v/s % Played plot by selecting models Args: LIST: The list of models to show in the plot, updated from frontend Returns: fig: The plot ''' short_names = label_map(LIST) list_columns = list(df.columns) df = df[df[list_columns[0]].isin(LIST)] X = df[list_columns[2]] fig, ax = plt.subplots() for model in LIST: short = short_names[model][0] same_flag = short_names[model][1] model_df = df[df[list_columns[0]] == model] x = model_df[list_columns[2]] y = model_df[list_columns[3]] color = plt.cm.rainbow(x / max(X)) # Use a colormap for different colors plt.scatter(x, y, color=color) if same_flag: plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(0, -15), ha='center', rotation=0) else: plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(20, -3), ha='center', rotation=0) ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2) ax.set_xticks(np.arange(0,110,10)) plt.xlim(-10, 110) plt.ylim(-10, 110) plt.xlabel('% Played') plt.ylabel('Quality Score') plt.title('Overview of benchmark results') plt.show() return fig def label_map(model_list: list) -> dict: ''' Generate a map from long names to short names, to plot them in frontend graph Define the short names in src/assets/text_content.py Args: model_list: A list of long model names Returns: short_name: A map from long to list of short name + indication if models are same or different ''' short_name = {} for model_name in model_list: splits = model_name.split('--') if len(splits) != 1: splits[0] = SHORT_NAMES[splits[0] + '-'] splits[1] = SHORT_NAMES[splits[1] + '-'] # Define the short name and indicate there are two different models short_name[model_name] = [splits[0] + '--' + splits[1], 0] else: splits[0] = SHORT_NAMES[splits[0] + '-'] # Define the short name and indicate both models are same short_name[model_name] = [splits[0], 1] return short_name def filter_search(df: pd.DataFrame, query: str) -> pd.DataFrame: ''' Filter the dataframe based on the search query Args: df: Unfiltered dataframe query: a string of queries separated by ";" Return: filtered_df: Dataframe containing searched queries in the 'Model' column ''' queries = query.split(';') list_cols = list(df.columns) df_len = len(df) filtered_models = [] models_list = list(df[list_cols[0]]) for q in queries: q = q.lower() for i in range(df_len): model_name = models_list[i] if q in model_name.lower(): filtered_models.append(model_name) # Append model names containing query q filtered_df = df[df[list_cols[0]].isin(filtered_models)] if query == "": return df return filtered_df