# Application file for Gradio App for OpenAI Model import gradio as gr import time import datetime import os from lc_base.chain import openai_chain from driveapi.drive import upload_chat_to_drive # global time_diff, model_name, search_type time_diff = 0 model_name="gpt-3.5-turbo-1106" search_type = "stuff" input_question = "" model_response = "" user_feedback = "" dir = os.path.join("outputs", "combined", "policy_eu_asia_usa", "faiss_index") # dir = os.path.join("outputs", "policy", "1", "faiss_index") title = """

ResearchBuddy

""" description = """

This is a GPT based Research Buddy to assist in navigating new research topics.

""" def save_api_key(api_key): os.environ['OPENAI_API_KEY'] = str(api_key) return f"API Key saved in the environment: {api_key}" def user(user_message, history): return "", history + [[user_message, None]] def respond(message, chat_history): global time_diff, model_response, input_question question = str(message) chain = openai_chain(inp_dir=dir) start_time = time.time() output = chain.get_response(query=question, k=10, model_name=model_name, type=search_type) print(output) # Update global variables to log time_diff = time.time() - start_time model_response = output input_question = question bot_message = output chat_history.append((message, bot_message)) time.sleep(2) return " ", chat_history def save_feedback(feedback): global user_feedback user_feedback = feedback curr_date = datetime.datetime.now() file_name = f"chat_{curr_date.day}_{curr_date.month}_{curr_date.hour}_{curr_date.minute}.csv" log_data = [ ["Question", "Response", "Model", "Time", "Feedback"], [input_question, model_response, model_name, time_diff, user_feedback] ] if user_feedback == "Yes" or feedback == "No": upload_chat_to_drive(log_data, file_name) def default_feedback(): return "🤔" with gr.Blocks(theme=gr.themes.Soft(primary_hue="emerald", neutral_hue="slate")) as chat: gr.HTML(title) api_key_input = gr.Textbox(lines=1, label="Enter your OpenAI API Key") api_key_input_submit = api_key_input.submit(save_api_key, [api_key_input]) chatbot = gr.Chatbot(height=750) msg = gr.Textbox(label="Send a message", placeholder="Send a message", show_label=False, container=False) with gr.Row(): with gr.Column(): gr.Examples([ ["Explain these documents to me in simpler terms."], ["What does these documents talk about?"], ], inputs=msg, label= "Click on any example to copy in the chatbox" ) with gr.Column(): feedback_radio = gr.Radio( choices=["Yes", "No", "🤔"], value=["🤔"], label="Did you like the latest response?", info="Selecting Yes/No will send the following diagnostic data - Question, Response, Time Taken", ) msg.submit(respond, [msg, chatbot], [msg, chatbot]) msg.submit(default_feedback, outputs=[feedback_radio]) feedback_radio.change( fn=save_feedback, inputs=[feedback_radio] ) gr.HTML(description) chat.queue() chat.launch()