import gradio as gr import pandas as pd import faiss import numpy as np import os from sentence_transformers import SentenceTransformer # Load the pre-trained embedding model model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-1.5B-instruct", trust_remote_code=True) # Set the max sequence length model.max_seq_length = 512 # Load the JSON data into a DataFrame df = pd.read_json('White-Stride-Red-68.json') df['embeding_context'] = df['embeding_context'].astype(str).fillna('') # Filter out any rows where 'embeding_context' might be empty or invalid df = df[df['embeding_context'] != ''] index = faiss.read_index('vector_store.index') # Function to perform search and return all columns def search_query(query_text): num_records = 50 # Encode the input query text embeddings_query = model.encode([query_text], prompt_name="query") embeddings_query_np = np.array(embeddings_query).astype('float32') # Search in FAISS index for nearest neighbors distances, indices = index.search(embeddings_query_np, num_records) # Get the top results based on FAISS indices result_df = df.iloc[indices[0]].drop(columns=['embeding_context']).drop_duplicates().reset_index(drop=True) return result_df # Gradio interface function def gradio_interface(query_text): search_results = search_query(query_text) return search_results # Gradio interface setup with gr.Blocks() as app: gr.Markdown("

White Stride Red Search (GTE-Qwen2)

") # Input text box for the search query search_input = gr.Textbox(label="Search Query", placeholder="Enter search text", interactive=True) # Output table for displaying results search_output = gr.DataFrame(label="Search Results") # Search button search_button = gr.Button("Search") # Link button click to action search_button.click(fn=gradio_interface, inputs=search_input, outputs=search_output) # Launch the Gradio app app.launch()