import yfinance as yf import streamlit as st import pandas as pd import datetime import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import LSTM from keras.layers import Dense from keras.layers import Bidirectional st.write(""" # Indonesian LQ45 Stock Price Prediction Shown are the stock **closing price** and **volume**. """) def user_input_features() : stock_symbol = st.sidebar.selectbox('Symbol',('ADHI', 'ADRO', 'AKRO', 'ANTM', 'ASII', 'BBCA', 'BBNI', 'BBRI', 'BBTN', 'BKSL', 'BMRI', 'BSDE', 'CPIN', 'ELSA', 'EXCL', 'GGRM', 'HMSP', 'ICBP', 'INCO', 'INDF', 'INDY', 'INKP', 'INTP', 'ITMG', 'JSMR', 'KLBF', 'LPKR', 'LPPF', 'MEDC', 'MNCN', 'PGAS', 'PTBA', 'PTPP', 'SCMA', 'SMGR', 'TLKM', 'TPIA', 'UNTR', 'UNVR', 'WIKA', 'WSKT')) date_start = st.sidebar.date_input("Start Date", datetime.date(2015, 5, 31)) date_end = st.sidebar.date_input("End Date", datetime.date.today()) tickerData = yf.Ticker(stock_symbol+'.JK') tickerDf = tickerData.history(period='1d', start=date_start, end=date_end) return tickerDf, stock_symbol input_df, stock_symbol = user_input_features() st.line_chart(input_df.Close) st.line_chart(input_df.Volume) st.write(""" # Stock Price Prediction Shown are the stock prediction for next 20 days. """) n_steps = 100 n_features = 1 model = Sequential() model.add(Bidirectional(LSTM(300, activation='relu'), input_shape=(n_steps, n_features))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') model.load_weights(stock_symbol + ".h5") df = input_df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) df = df[df.Volume > 0] close = df['Close'][-n_steps:].to_list() min_in = min(close) max_in = max(close) in_seq = [] for i in close : in_seq.append((i - min_in) / (max_in - min_in)) for i in range(20) : x_input = np.array(in_seq[-100:]) x_input = x_input.reshape((1, n_steps, n_features)) yhat = model.predict(x_input, verbose=0) in_seq.append(yhat[0][0]) norm_res = in_seq[-20:] res = [] for i in norm_res : res.append(i * (max_in - min_in) + min_in) closepred = close[-80:] for x in res : closepred.append(x) plt.figure(figsize = (20,10)) plt.plot(closepred, label="Prediction") plt.plot(close[-80:], label="Previous") plt.ylabel('Price (Rp)', fontsize = 15 ) plt.xlabel('Days', fontsize = 15 ) plt.title(stock_symbol + " Stock Prediction", fontsize = 20) plt.legend() plt.grid() st.pyplot(plt)