import gradio as gr from llama_cpp import Llama from huggingface_hub import hf_hub_download # Define a function to load the model from the Hugging Face Hub def load_model(): repo_id = "forestav/gguf_lora_model" # Your Hugging Face repo model_file = "unsloth.F16.gguf" # Model file in GGUF format # Download the model file local_path = hf_hub_download(repo_id=repo_id, filename=model_file) print(f"Model loaded from: {local_path}") # Load the model using llama_cpp model = Llama(model_path=local_path, n_ctx=2048, n_threads=8, use_metal=False) return model # Initialize the model model = load_model() # Define the response function for chat interaction def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): try: # Prepare the system message and chat history messages = [{"role": "system", "content": system_message}] # Add the history of the conversation for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Add the current message from the user messages.append({"role": "user", "content": message}) # Make the model prediction response = model.create_chat_completion( messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) return response["choices"][0]["message"]["content"] except Exception as e: # Return error message if something goes wrong return f"Error: {e}" # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) # Launch the app if __name__ == "__main__": demo.launch()