from typing import overload, Tuple import torch from torch.nn import functional as F class Guidance: def __init__(self, scale: float, t_start: int, t_stop: int, space: str, repeat: int) -> "Guidance": """ Initialize restoration guidance. Args: scale (float): Gradient scale (denoted as `s` in our paper). The larger the gradient scale, the closer the final result will be to the output of the first stage model. t_start (int), t_stop (int): The timestep to start or stop guidance. Note that the sampling process starts from t=1000 to t=0, the `t_start` should be larger than `t_stop`. space (str): The data space for computing loss function (rgb or latent). Our restoration guidance is based on [GDP](https://github.com/Fayeben/GenerativeDiffusionPrior). Thanks for their work! """ self.scale = scale * 3000 self.t_start = t_start self.t_stop = t_stop self.target = None self.space = space self.repeat = repeat def load_target(self, target: torch.Tensor) -> None: self.target = target def __call__(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: # avoid propagating gradient out of this scope pred_x0 = pred_x0.detach().clone() target_x0 = target_x0.detach().clone() return self._forward(target_x0, pred_x0, t) @overload def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: ... class MSEGuidance(Guidance): def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: # inputs: [-1, 1], nchw, rgb with torch.enable_grad(): pred_x0.requires_grad_(True) loss = (pred_x0 - target_x0).pow(2).mean((1, 2, 3)).sum() scale = self.scale g = -torch.autograd.grad(loss, pred_x0)[0] * scale return g, loss.item() class WeightedMSEGuidance(Guidance): def _get_weight(self, target: torch.Tensor) -> torch.Tensor: # convert RGB to G rgb_to_gray_kernel = torch.tensor([0.2989, 0.5870, 0.1140]).view(1, 3, 1, 1) target = torch.sum(target * rgb_to_gray_kernel.to(target.device), dim=1, keepdim=True) # initialize sobel kernel in x and y axis G_x = [ [1, 0, -1], [2, 0, -2], [1, 0, -1] ] G_y = [ [1, 2, 1], [0, 0, 0], [-1, -2, -1] ] G_x = torch.tensor(G_x, dtype=target.dtype, device=target.device)[None] G_y = torch.tensor(G_y, dtype=target.dtype, device=target.device)[None] G = torch.stack((G_x, G_y)) target = F.pad(target, (1, 1, 1, 1), mode='replicate') # padding = 1 grad = F.conv2d(target, G, stride=1) mag = grad.pow(2).sum(dim=1, keepdim=True).sqrt() n, c, h, w = mag.size() block_size = 2 blocks = mag.view(n, c, h // block_size, block_size, w // block_size, block_size).permute(0, 1, 2, 4, 3, 5).contiguous() block_mean = blocks.sum(dim=(-2, -1), keepdim=True).tanh().repeat(1, 1, 1, 1, block_size, block_size).permute(0, 1, 2, 4, 3, 5).contiguous() block_mean = block_mean.view(n, c, h, w) weight_map = 1 - block_mean return weight_map def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: # inputs: [-1, 1], nchw, rgb with torch.no_grad(): w = self._get_weight((target_x0 + 1) / 2) with torch.enable_grad(): pred_x0.requires_grad_(True) loss = ((pred_x0 - target_x0).pow(2) * w).mean((1, 2, 3)).sum() scale = self.scale g = -torch.autograd.grad(loss, pred_x0)[0] * scale return g, loss.item()