import torch import lpips from .image import rgb2ycbcr_pt from .common import frozen_module # https://github.com/XPixelGroup/BasicSR/blob/033cd6896d898fdd3dcda32e3102a792efa1b8f4/basicsr/metrics/psnr_ssim.py#L52 def calculate_psnr_pt(img, img2, crop_border, test_y_channel=False): """Calculate PSNR (Peak Signal-to-Noise Ratio) (PyTorch version). Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Args: img (Tensor): Images with range [0, 1], shape (n, 3/1, h, w). img2 (Tensor): Images with range [0, 1], shape (n, 3/1, h, w). crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: PSNR result. """ assert img.shape == img2.shape, (f'Image shapes are different: {img.shape}, {img2.shape}.') if crop_border != 0: img = img[:, :, crop_border:-crop_border, crop_border:-crop_border] img2 = img2[:, :, crop_border:-crop_border, crop_border:-crop_border] if test_y_channel: img = rgb2ycbcr_pt(img, y_only=True) img2 = rgb2ycbcr_pt(img2, y_only=True) img = img.to(torch.float64) img2 = img2.to(torch.float64) mse = torch.mean((img - img2)**2, dim=[1, 2, 3]) return 10. * torch.log10(1. / (mse + 1e-8)) class LPIPS: def __init__(self, net: str) -> None: self.model = lpips.LPIPS(net=net) frozen_module(self.model) @torch.no_grad() def __call__(self, img1: torch.Tensor, img2: torch.Tensor, normalize: bool) -> torch.Tensor: """ Compute LPIPS. Args: img1 (torch.Tensor): The first image (NCHW, RGB, [-1, 1]). Specify `normalize` if input image is range in [0, 1]. img2 (torch.Tensor): The second image (NCHW, RGB, [-1, 1]). Specify `normalize` if input image is range in [0, 1]. normalize (bool): If specified, the input images will be normalized from [0, 1] to [-1, 1]. Returns: lpips_values (torch.Tensor): The lpips scores of this batch. """ return self.model(img1, img2, normalize=normalize) def to(self, device: str) -> "LPIPS": self.model.to(device) return self