import math import torch import torch.nn as nn from torch.nn import functional as F import numpy as np from einops import rearrange from typing import Optional, Any from model.distributions import DiagonalGaussianDistribution from model.config import Config, AttnMode def nonlinearity(x): # swish return x*torch.sigmoid(x) def Normalize(in_channels, num_groups=32): return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0,1,0,1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x+h class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() print(f"building AttnBlock (vanilla) with {in_channels} in_channels") self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = q.reshape(b,c,h*w) q = q.permute(0,2,1) # b,hw,c k = k.reshape(b,c,h*w) # b,c,hw w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b,c,h*w) w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b,c,h,w) h_ = self.proj_out(h_) return x+h_ class MemoryEfficientAttnBlock(nn.Module): """ Uses xformers efficient implementation, see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 Note: this is a single-head self-attention operation """ # def __init__(self, in_channels): super().__init__() print(f"building MemoryEfficientAttnBlock (xformers) with {in_channels} in_channels") self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.attention_op: Optional[Any] = None def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention B, C, H, W = q.shape q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v)) q, k, v = map( lambda t: t.unsqueeze(3) .reshape(B, t.shape[1], 1, C) .permute(0, 2, 1, 3) .reshape(B * 1, t.shape[1], C) .contiguous(), (q, k, v), ) out = Config.xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) out = ( out.unsqueeze(0) .reshape(B, 1, out.shape[1], C) .permute(0, 2, 1, 3) .reshape(B, out.shape[1], C) ) out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C) out = self.proj_out(out) return x+out class SDPAttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() print(f"building SDPAttnBlock (sdp) with {in_channels} in_channels") self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention B, C, H, W = q.shape q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v)) q, k, v = map( lambda t: t.unsqueeze(3) .reshape(B, t.shape[1], 1, C) .permute(0, 2, 1, 3) .reshape(B * 1, t.shape[1], C) .contiguous(), (q, k, v), ) out = F.scaled_dot_product_attention(q, k, v) out = ( out.unsqueeze(0) .reshape(B, 1, out.shape[1], C) .permute(0, 2, 1, 3) .reshape(B, out.shape[1], C) ) out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C) out = self.proj_out(out) return x+out def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): assert attn_type in ["vanilla", "sdp", "xformers", "linear", "none"], f'attn_type {attn_type} unknown' if attn_type == "vanilla": assert attn_kwargs is None return AttnBlock(in_channels) elif attn_type == "sdp": return SDPAttnBlock(in_channels) elif attn_type == "xformers": return MemoryEfficientAttnBlock(in_channels) elif attn_type == "none": return nn.Identity(in_channels) else: raise NotImplementedError() class Encoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, **ignore_kwargs): super().__init__() ### setup attention type if Config.attn_mode == AttnMode.SDP: attn_type = "sdp" elif Config.attn_mode == AttnMode.XFORMERS: attn_type = "xformers" else: attn_type = "vanilla" if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions-1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, 2*z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): # timestep embedding temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions-1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, **ignorekwargs): super().__init__() ### setup attention type if Config.attn_mode == AttnMode.SDP: attn_type = "sdp" elif Config.attn_mode == AttnMode.XFORMERS: attn_type = "xformers" else: attn_type = "vanilla" if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end self.tanh_out = tanh_out self.controller = None # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,)+tuple(ch_mult) block_in = ch*ch_mult[self.num_resolutions-1] curr_res = resolution // 2**(self.num_resolutions-1) self.z_shape = (1,z_channels,curr_res,curr_res) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: print(f"attn") attn.append(make_attn(block_in, attn_type=attn_type)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb) ''' ToMe ''' # tome_info = { # "size": None, # "hooks": [], # "args": { # "generator": None, # "max_downsample": 2, # "min_downsample": 1, # "generator": None, # "seed": 123, # "batch_size": 1, # "align_batch": False, # "merge_global": False, # "global_merge_ratio": 0, # "local_merge_ratio": 0.9, # "global_rand": 0.1, # "target_stride": 4, # "current_step": 0, # "frame_ids": [0], # "label": "Decoder_up", # "downsample": 1, # "controller": self.controller, # } # } # B, C, H, W = h.shape # h = rearrange(h, 'b c h w -> b (h w) c') # if tome_info["args"]["controller"] is None: # non_pad_ratio_h, non_pad_ratio_w = 1, 1 # print(f"[INFO] no padding removal") # else: # non_pad_ratio_h, non_pad_ratio_w = self.controller.non_pad_ratio # padding_size_w = W - int(W * non_pad_ratio_w) # padding_size_h = H - int(H * non_pad_ratio_h) # padding_mask = torch.zeros((H, W), device=h.device, dtype=torch.bool) # if padding_size_w: # padding_mask[:, -padding_size_w:] = 1 # if padding_size_h: # padding_mask[-padding_size_h:, :] = 1 # padding_mask = rearrange(padding_mask, 'h w -> (h w)') # idx_buffer = torch.arange(H * W, device=h.device, dtype=torch.int64) # non_pad_idx = idx_buffer[None, ~padding_mask, None] # del idx_buffer, padding_mask # x_non_pad = torch.gather(h, dim=1, index=non_pad_idx.expand(B, -1, C)) # tome_info["size"] = (int(H * non_pad_ratio_h), int(W * non_pad_ratio_w)) # from vidtome.patch import compute_merge # m_a, u_a, merged_tokens = compute_merge( # self, x_non_pad, tome_info) # x_non_pad = u_a(merged_tokens) # h.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad) # h = rearrange(h, 'b (h w) c -> b c h w', h=H, w=W) ''' ToMe ended''' h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): ''' ToMe ''' # print(f"[INFO] before merging h mean: {torch.mean(h)} h std: {torch.std(h)}") # B, C, H, W = h.shape # h = rearrange(h, 'b c h w -> b (h w) c') # padding_size_w = W - int(W * non_pad_ratio_w) # padding_size_h = H - int(H * non_pad_ratio_h) # padding_mask = torch.zeros((H, W), device=h.device, dtype=torch.bool) # if padding_size_w: # padding_mask[:, -padding_size_w:] = 1 # if padding_size_h: # padding_mask[-padding_size_h:, :] = 1 # padding_mask = rearrange(padding_mask, 'h w -> (h w)') # idx_buffer = torch.arange(H * W, device=h.device, dtype=torch.int64) # non_pad_idx = idx_buffer[None, ~padding_mask, None] # del idx_buffer, padding_mask # x_non_pad = torch.gather(h, dim=1, index=non_pad_idx.expand(B, -1, C)) # tome_info["size"] = (int(H * non_pad_ratio_h), int(W * non_pad_ratio_w)) # m_a, u_a, merged_tokens = compute_merge( # self, x_non_pad, tome_info) # x_non_pad = u_a(merged_tokens) # h.scatter_(dim=1, index=non_pad_idx.expand(B, -1, C), src=x_non_pad) # h = rearrange(h, 'b (h w) c -> b c h w', h=H, w=W) # print(f"[INFO] after merging h mean: {torch.mean(h)} h std: {torch.std(h)}") ''' ToMe ended ''' for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb) # print(f"i_level {i_level} i_block {i_block} with shape {h.shape}") if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # import ipdb; ipdb.set_trace() # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) if self.tanh_out: h = torch.tanh(h) return h class AutoencoderKL(nn.Module): def __init__(self, ddconfig, embed_dim): super().__init__() self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) assert ddconfig["double_z"] self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) self.embed_dim = embed_dim def encode(self, x, batch_size=0): if batch_size: h = [] batch_x = x.split(batch_size, dim=0) for x_ in batch_x: h_ = self.encoder(x_) h += [h_] torch.cuda.empty_cache() h = torch.cat(h) else: h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z, batch_size=0): z = self.post_quant_conv(z) if batch_size: dec = [] batch_z = z.split(batch_size, dim=0) for z_ in batch_z: # decode z_ = self.decoder(z_) dec += [z_] torch.cuda.empty_cache() dec = torch.cat(dec) else: dec = self.decoder(z) # import ipdb; ipdb.set_trace() return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior