from functools import partial from typing import Tuple import torch from torch import nn import numpy as np def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): if schedule == "linear": betas = ( np.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=np.float64) ** 2 ) elif schedule == "cosine": timesteps = ( np.arange(n_timestep + 1, dtype=np.float64) / n_timestep + cosine_s ) alphas = timesteps / (1 + cosine_s) * np.pi / 2 alphas = np.cos(alphas).pow(2) alphas = alphas / alphas[0] betas = 1 - alphas[1:] / alphas[:-1] betas = np.clip(betas, a_min=0, a_max=0.999) elif schedule == "sqrt_linear": betas = np.linspace(linear_start, linear_end, n_timestep, dtype=np.float64) elif schedule == "sqrt": betas = np.linspace(linear_start, linear_end, n_timestep, dtype=np.float64) ** 0.5 else: raise ValueError(f"schedule '{schedule}' unknown.") return betas def extract_into_tensor(a: torch.Tensor, t: torch.Tensor, x_shape: Tuple[int]) -> torch.Tensor: b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) class Diffusion(nn.Module): def __init__( self, timesteps=1000, beta_schedule="linear", loss_type="l2", linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, parameterization="eps" ): super().__init__() self.num_timesteps = timesteps self.beta_schedule = beta_schedule self.linear_start = linear_start self.linear_end = linear_end self.cosine_s = cosine_s assert parameterization in ["eps", "x0", "v"], "currently only supporting 'eps' and 'x0' and 'v'" self.parameterization = parameterization self.loss_type = loss_type betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) sqrt_alphas_cumprod = np.sqrt(alphas_cumprod) sqrt_one_minus_alphas_cumprod = np.sqrt(1. - alphas_cumprod) self.betas = betas self.register("sqrt_alphas_cumprod", sqrt_alphas_cumprod) self.register("sqrt_one_minus_alphas_cumprod", sqrt_one_minus_alphas_cumprod) def register(self, name: str, value: np.ndarray) -> None: self.register_buffer(name, torch.tensor(value, dtype=torch.float32)) def q_sample(self, x_start, t, noise): return ( extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def get_v(self, x, noise, t): return ( extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x ) def get_loss(self, pred, target, mean=True): if self.loss_type == 'l1': loss = (target - pred).abs() if mean: loss = loss.mean() elif self.loss_type == 'l2': if mean: loss = torch.nn.functional.mse_loss(target, pred) else: loss = torch.nn.functional.mse_loss(target, pred, reduction='none') else: raise NotImplementedError("unknown loss type '{loss_type}'") return loss def p_losses(self, model, x_start, t, cond): noise = torch.randn_like(x_start) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) model_output = model(x_noisy, t, cond) if self.parameterization == "x0": target = x_start elif self.parameterization == "eps": target = noise elif self.parameterization == "v": target = self.get_v(x_start, noise, t) else: raise NotImplementedError() loss_simple = self.get_loss(model_output, target, mean=False).mean() return loss_simple