import torch import torch.nn.functional as F class InputPadder: """ Pads images such that dimensions are divisible by 8 """ def __init__(self, dims, mode='sintel', padding_factor=8): self.ht, self.wd = dims[-2:] pad_ht = (((self.ht // padding_factor) + 1) * padding_factor - self.ht) % padding_factor pad_wd = (((self.wd // padding_factor) + 1) * padding_factor - self.wd) % padding_factor if mode == 'sintel': self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2] else: self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht] def pad(self, *inputs): return [F.pad(x, self._pad, mode='replicate') for x in inputs] def unpad(self, x): ht, wd = x.shape[-2:] c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] return x[..., c[0]:c[1], c[2]:c[3]] def coords_grid(batch, ht, wd, normalize=False): if normalize: # [-1, 1] coords = torch.meshgrid(2 * torch.arange(ht) / (ht - 1) - 1, 2 * torch.arange(wd) / (wd - 1) - 1) else: coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) coords = torch.stack(coords[::-1], dim=0).float() return coords[None].repeat(batch, 1, 1, 1) # [B, 2, H, W] def compute_out_of_boundary_mask(flow): # flow: [B, 2, H, W] assert flow.dim() == 4 and flow.size(1) == 2 b, _, h, w = flow.shape init_coords = coords_grid(b, h, w).to(flow.device) corres = init_coords + flow # [B, 2, H, W] max_w = w - 1 max_h = h - 1 valid_mask = (corres[:, 0] >= 0) & (corres[:, 0] <= max_w) & (corres[:, 1] >= 0) & (corres[:, 1] <= max_h) # in case very large flow flow_mask = (flow[:, 0].abs() <= max_w) & (flow[:, 1].abs() <= max_h) valid_mask = valid_mask & flow_mask return valid_mask # [B, H, W] def count_parameters(model): num = sum(p.numel() for p in model.parameters() if p.requires_grad) return num