import os import tensorflow as tf import pandas as pd from Bio import SeqIO GUIDE_LEN = 23 CONTEXT_5P = 3 CONTEXT_3P = 0 TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T'], [0, 1, 2, 3])) NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A'])) NUM_TOP_GUIDES = 10 NUM_MISMATCHES = 3 def sequence_complement(sequence: list): return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence] def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False): # stack list of sequences into a tensor sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0) # tokenize sequence nucleotide_table = tf.lookup.StaticVocabularyTable( initializer=tf.lookup.KeyValueTensorInitializer( keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string), values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)), num_oov_buckets=1) sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values), row_splits=sequence.row_splits).to_tensor(255) # add context padding if requested if add_context_padding: pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype) pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype) sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1) # one-hot encode sequence = tf.one_hot(sequence, depth=4) return sequence def process_data(transcript_seq: str): # convert to upper case transcript_seq = transcript_seq.upper() # get all target sites target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN)] # prepare guide sequences guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq]) # model inputs model_inputs = tf.concat([ tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]), tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]), ], axis=-1) return target_seq, guide_seq, model_inputs def tiger_predict(transcript_seq: str): # load model if os.path.exists('model'): tiger = tf.keras.models.load_model('model') else: print('no saved model!') exit() # parse transcript sequence target_seq, guide_seq, model_inputs = process_data(transcript_seq) # get predictions normalized_lfc = tiger.predict_step(model_inputs) predictions = pd.DataFrame({'Guide': guide_seq, 'Normalized LFC': tf.squeeze(normalized_lfc).numpy()}) return predictions if __name__ == '__main__': # simple test case transcript_sequence = 'ACGTACGTACGTACGTACGTACGTACGTACGT'.lower() df = tiger_predict(transcript_sequence) print(df)