# merges the output of the main transfer_model script import torch from pathlib import Path import pickle from scipy.spatial.transform import Rotation as R import numpy as np KEYS = [ "transl", "betas", "full_pose", ] def aggregate_rotmats(x): x = np.concatenate(x, axis=0) s = x.shape[:-2] try: x = R.from_matrix(x.reshape(-1, 3, 3)).as_rotvec() except: pass x = x.reshape(s[0], -1) return x aggregate_function = {k: lambda x: np.concatenate(x, axis=0) for k in KEYS} aggregate_function["betas"] = lambda x: np.concatenate(x, axis=0).mean(0) for k in ["global_orient", "body_pose", "left_hand_pose", "right_hand_pose", "jaw_pose", "full_pose"]: aggregate_function[k] = aggregate_rotmats def merge(output_dir, gender): output_dir = Path(output_dir) assert output_dir.exists() assert output_dir.is_dir() # get list of all pkl files in output_dir with fixed length numeral names pkl_files = [f for f in output_dir.glob("*.pkl") if f.stem != "merged"] pkl_files = [f for f in sorted(pkl_files, key=lambda x: int(x.stem))] assert "merged.pkl" not in [f.name for f in pkl_files] merged = {} # iterate over keys and put all values in lists keys = set(KEYS) for k in keys: merged[k] = [] for pkl_file in pkl_files: with open(pkl_file, "rb") as f: data = pickle.load(f) for k in keys: if k in data: merged[k].append(data[k]) b = np.concatenate(merged["betas"], axis=0) print("betas:") for mu, sigma in zip(b.mean(0), b.std(0)): print(" {:.3f} +/- {:.3f}".format(mu, sigma)) # aggregate all values for k in keys: merged[k] = aggregate_function[k](merged[k]) # add gender poses = merged["full_pose"] trans = merged["transl"] if gender == "female": gender = np.zeros([poses.shape[0], 1]) elif gender == "male": gender = np.ones([poses.shape[0], 1]) else: gender = np.ones([poses.shape[0], 1]) * 2 merged = np.concatenate([poses, trans, gender], axis=1) return merged if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Merge output of transfer_model script') parser.add_argument('output_dir', type=str, help='output directory of transfer_model script') parser.add_argument('--gender', type=str, choices=['male', 'female', 'neutral'], help='gender of actor in motion sequence') args = parser.parse_args() merge(args.output_dir, args.gender)